
Connecting SAS to the World Wide Web - Forms Across the Internet®

Larry Hoyle
Institute for Public Policy and Business Research

University of Kansas

Abstract

The World Wide Web is an explosively growing
internet facility which allows for hypermedia
documents to be distributed across the internet.
Recent extensions to the Hypertext Markup
Language (HTML) upon which it is built allow
for the creation of forms which can be serviced
by a remote application using the Common
Gateway Interface (CGI) to a Hypertext Transfer
Protocol Daemon or server (HTTPD). This paper
will describe how to use SAS as an HTML
forms server.

A specific example for setting up under
IBM AIX will be listed. The sample form will
allow the selection of county level census data.
Using a client program such as NCSA Mosaic,
the user will request that a variable be
displayed either as a table or as a PostScript
map. The request is sent to an HTTP server
program at another site on the internet which in
turn executes a SAS program which generates
the table or the graphic and sends it back across
the internet to the user's client program which
displays it. (It sounds complicated but it's really
not too bad).

Introduction
Recent developments in the tools

available for using the internet allow for a forms
based front end to SAS . Free client software®

such as NCSA Mosaic is available for multiple
platforms, including Windows , Macintosh , and® ®

for Xwindows. The server daemon (httpd)
which launches SAS is available for a variety of
UNIX environments.

Forms can be created with embedded
graphics, radio buttons, check boxes, and text
input fields. When a client application connects
to the form across the internet, the data entered
into the form is sent from the client machine to
the daemon on the server machine. The daemon
sets certain environment variables and launches
the requested application, in our case SAS, with

the data from the form as its standard input.
Once it has processed the input data the

SAS program can then respond in a number of
ways. It could send back another form, other
output formatted for display by the client, such
as a document, a graphic, a movie, or a sound.
It could also send back a stream of data
intended for downloading to the client.

This paper shows a simple form and a
SAS application which responds to it. The form
allows one to select one of the dozen variables
in a SAS dataset for display in one of three
modes: in a table, as a PostScript map, or in a®

form convenient for spreadsheet input. The form
also allows for a request for the display of the
SAS program.

The World Wide Web (WWW or W3)
Long ago, in the internet's primeval days

(the 80s), most people transferred information
across the internet either embedded in e-mail or
by using ftp. FTP transfers were done via a
command line interface which was not
particularly user-friendly.

In 1991 the University of Minnesota
Microcomputer, Workstation, Networks Center
developed the original gopher. Gopher has
evolved into a global information system. Users
of gopher select items from menus in order to
retrieve various kinds of files which can contain
text, images, executables and so on. Menu items
can also represent remote connections (telnet
sessions.)

The World Wide Web project started in
1989 at CERN in Geneva, Switzerland. By
January 1993 there were around 50 known
WWW servers around the world. Toward the
end of 1993 The National Center for
Supercomputing Activities (NCSA) had released
browsers for X, Windows and the Macintosh.
These browsers could also access gopher, ftp
sites, and more.

Version 2 of Mosaic, the NCSA browser,
added the capability to do forms. Lynx, a

character based browser from the University of
Kansas, also does forms. The forms capability is
the feature which enables the interface to SAS
discussed here.

The World Wide Web is built upon a
hypertext document format called Hypertext
Markup Language (HTML) and upon a transfer
protocol called Hypertext Transfer Protocol
(HTTP). A client program such as Mosaic is
pointed at a resource through a Universal
Resource Locator (URL). The URL contains
information about the type of resource and its
location on the internet. The URL:
http://info.cern.ch/hypertext/WWW/History.html
begins with http:// indicating that it is to be
accessed through Hypertext Transfer Protocol. It
is found on the machine info.cern.ch in the
directory hypertext/WWW as the file History.html.

HTML
HTML is an ISO Standard Generalized

Markup Language (SGML) document type. An
HTML document consists of ASCII text with
some embedded markup strings. The markup
codes are all sequences of printable characters.
These codes allow for text formatting
comparable to early word processing programs.
They also allow for embedding graphics, links
to other HTML documents, or links to other
internet resources.

Figure 1 shows an example HTML file
which defines the form shown rendered by
Mosaic in figure 2. The line:
<H2>Please select a variable</H2>
contains two markup tags. The first tag, <H2>,
defines the beginning of a second level heading.
The tag </H2> marks the end of the heading.
The client program will typically render the
heading as bold, large, flush left, text with some
extra space above and below. There are other
text formatting tags in figure 1. The tag <hr>
defines a horizontal rule, <p> defines the end
of a paragraph, defines the beginning of
some bold text, and
 defines a line break.

The tags listed above began with either <
or </ and ended with >. Within those delimiters
they contained only the name of the tag. Other
tags also contain attributes. The two tags in
figure 1 which begin with <a both contain an

attribute which begins with href=. The <a tag
defines an "anchor" which defines a hypertext
link. The href= attribute defines the address of
the entity to which the user will be transferred
when the link is activated. In figure 1 both
anchors point to other html documents which
will be displayed if the user clicks on the text
between the <a and </a tags. In the first
instance, figure 1 would be rendered as:
Click for more information
When the user clicks on the map , the document
ghostscript.html would be retrieved from the
machine www.ncsa.uiuc.edu from across the
internet.

The map is placed in the form by a link
defined by the <IMG tag. The SRC="showdg.gif"
attribute points to a GIF file in the same
directory as the HTML file containing it. The
ALT="here" defines the text string to be printed
if the client can't display the graphic file.

The <FORM tag in figure 1 has two
attributes. The first METHOD=POST tells the
client how to structure the data it is sending to
the server for the form. The ACTION= attribute
points to the executable to which the data from
the form will be sent. In this case the executable
is a shell script named cgisas_mwsug94. This
shell script starts a SAS program which expects
to receive data from the form in figure 1.

Between the <FORM and the </FORM
tags lies the form itself. In this case there is first
some heading information followed by two
menus and finished by an <INPUT tag with a
TYPE="submit" attribute. The latter causes the
client to send a request to the server to execute
the ACTION= application.

The two menus are delimited by
<MENU> and </MENU> tags. Each item in a
menu begins with a tag and contains a
<INPUT tag. The <NAME= and <VALUE=
attributes in each list item define what will be
sent to the server if that item is selected. The
<TYPE="radio" attribute in each list item says
that for all items with the same value for
<NAME=, only one can be selected at a time.
Thus if the user selects "Live Births", the data
stream sent from the client to the server will
include the string "sasvar=Births" and no other
"sasvar=" value.

<TITLE>Example for MidWest SAS Users Group 1994 Conference - Larry Hoyle </TITLE>
<H1>Connecting SAS to the World Wide Web - Forms Across the Internet</H1>

This is the example for a paper to be presented to the
1994 MidWest SAS Users Group Conference September 25-27 1994 in Omaha.
When you press "Go Get It", your selections will be
passed to a SAS job which extracts 1990 Census data from a SAS dataset
and sends it back to you in the form you requested.
You must have a PostScript viewer such as Ghostscript in order to
view a shaded PostScript map generated by this form. Click

for information on how to find Ghostscript.
<HR>
<FORM METHOD="POST"
 ACTION="http://stat1.cc.ukans.edu:8000/cgi-bin/cgisas_mwsug94">

<H2>Please select a variable</H2>
<MENU>
 <INPUT TYPE="radio" NAME="sasvar" VALUE="Births"> Live Births.
 <INPUT TYPE="radio" NAME="sasvar" VALUE="Deaths"> Deaths.
 <INPUT TYPE="radio" NAME="sasvar" VALUE="Foodstmp"> Food Stamp recipients.
 <INPUT TYPE="radio" NAME="sasvar" VALUE="Mdvlhome"> Median Home Value.
 <INPUT TYPE="radio" NAME="sasvar" VALUE="Medage"> Median Age.
 <INPUT TYPE="radio" NAME="sasvar" VALUE="Pcapinc"> Per Capita Income.
 <INPUT TYPE="radio" NAME="sasvar" VALUE="Pcslstax"> Per Capita Sales Tax.
 <INPUT TYPE="radio" NAME="sasvar" VALUE="Pop"> Population.
 <INPUT TYPE="radio" NAME="sasvar" VALUE="Popdense" CHECKED> Population Density.
 <INPUT TYPE="radio" NAME="sasvar" VALUE="Precip"> Precipitation.
 <INPUT TYPE="radio" NAME="sasvar" VALUE="Pupteach"> Pupil Teacher Ratio.
 <INPUT TYPE="radio" NAME="sasvar" VALUE="Valcrops"> Total Value Field Crops ($million).
</MENU>

<H2>Please select a format</H2>
<MENU>
 <INPUT TYPE="radio" NAME="request" VALUE="table" CHECKED>HTML table.
 <INPUT TYPE="radio" NAME="request" VALUE="file" >
fixed ascii file for spreadsheet input (use with "load to disk").
 <INPUT TYPE="radio" NAME="request" VALUE="map" >
PostScript map (must have PostScript viewer - see above).
 <INPUT TYPE="radio" NAME="request" VALUE="source" >List the SAS Program.
</MENU>

To receive your information, press this button: <INPUT TYPE="submit"
VALUE="Go Get It">.

</FORM>
<HR>
Larry Hoyle, <i>lhoyle@stat1.cc.ukans.edu,</i>

Institute for Public Policy and Business Research, University of Kansas

Figure 1, An HTML file defining a form.

Title and Heading

Note that his text gets
justified

First anchor
Embedded graphic

Form begins
cgisas_mwsug94 will be
invoked

First menu

CHECKED

Second Menu

Submit button

Form ends

Second anchor

Figure 2, the form as rendered by NCSA Windows Mosaic 2.0 Alpha Release 2

About WWW - http://info.cern.ch/hypertext/WWW/TheProject.html
WWW Home page - http://info.cern.ch/
WWW History - http://info.cern.ch/hypertext/WWW/History.html
HTML Primer - http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html
Forms Overview - http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/fill-out-forms/overview.html
Gopher FAQ - gopher://gopher.uiuc.edu:70/00/Gopher/FAQ
Overview of httpd - http://hoohoo.ncsa.uiuc.edu/docs/Overview.html
Mosaic for Windows home page - http://www.ncsa.uiuc.edu/SDG/Software/WinMosaic/HomePage.html

This is a list of URLs that might be useful in getting started with HTML forms.

#!/bin/sh
this script runs the SAS program mwsug94.sas
when launched from httpd
HOME and PATH are not defined
3/25/94 Larry Hoyle <lhoyle@stat1.cc.ukans.edu>

HOME=where/the/heart/is; export HOME
PATH=$HOME/public_html/cgi-bin:$PATH
PATH=$HOME/public_html:$PATH

cd $HOME/public_html/cgi-bin

#
SAS startup shell script modified from one by:
11/18/92 Wes Hubert <wes@kuhub.cc.ukans.edu>

Modify the following line to point to the location of SAS
SAS_ROOT=/homeb/sas609/sas609
export SAS_ROOT

Search SAS directory first
PATH=$SAS_ROOT:$PATH ; export PATH

SAS requires its own TERMINFO files
TERMINFO=$SAS_ROOT/terminfo
export TERMINFO
TERMINFOADD=$SAS_ROOT/terminfo
export TERMINFOADD

Use absolute path for SAS executable
cat -u | $SAS_ROOT/sas "mwsug94.sas"

Figure 3, the shell script "cgisas_mwsug94"

%global rqmeth;
%let rqmeth=%sysget(REQUEST_METHOD);

%global cnttyp;
%let cnttyp=%sysget(CONTENT_TYPE);

%global cntlen;
%let cntlen=%sysget(CONTENT_LENGTH);

Figure 4, reading the environment variables

One entry in each list also contains the
attribute CHECKED which makes it the default
selection. The form in figure 1 will send a data
stream to the server containing
sasvar=Popdense and request=table if the user
selects no radio buttons.
The Data Stream

The stream of data sent to the server is
one long string of printable ASCII characters.
The string contains no line breaks but does
contain a combination of three delimiters which
are:
 & ends a name/value pair. Note that the last

pair may not be followed by an &.
 = separates a name from a value.
 % an escape for non printable characters. The

% will be followed by two hexadecimal
digits. Note that even the ASCII space
character is escaped. Space characters
will appear as %20.

The data stream for the default form from figure
1 will look like:
sasvar=Popdense&request=table
with no carriage returns, line feeds, or eof mark.

Launching the Form Server
When a form is submitted the client

program sends a message to the daemon (httpd)
already running on the server. The daemon
receives this message and launches the
application specified in the ACTION= attribute
of the <FORM tag. The shell in which the
application is launched has no PATH or HOME
defined. It does have three environment
variables defined:
REQUEST_METHOD, CONTENT_TYPE, and
CONTENT_LENGTH. Of these
CONTENT_LENGTH is the most important for
our application. Since the data stream piped to
the application by httpd has no end of file
indicator, the SAS program must use
CONTENT_LENGTH to terminate reading.

The SAS Program
Figure 3 shows the shell script which

launches SAS on the IBM RS6000 (under AIX) to
run this SAS program. The pipe of the cat -u
was necessary to avoid what seems to be a
buffering problem. There may be better
solutions.

Figure 4 shows the portion of the SAS
program which reads the environment variables
and creates macro variables with those values.

%global maxlen; /* max length of name or value string */
%let maxlen=200;
%global sasvar; /* SAS variable to be displayed */
%global saslabl; /* label of the variable to be displayed */
%global request;/* type of request eg. "map" or "table" */

data namevals;
 length name $ &maxlen value $ &maxlen hexstr $ 2;
 array s{2} name value;
 keep name value;
 length c $ 1;
 retain ixs name value;
 keep name value;
 infile stdin lrecl=1 recfm=f;

 ixs=1; name=' '; value=' ';
 do ixc=1 to &cntlen;
 input c $char1. @@; put c=;

 select(c);
 when('&')do;
 name=left(name); value=left(value);
 output;
 put value=;
 ixs=1; name=' '; value=' ';
 end; /* when '&' */

 when('=')do;
 put name=;
 ixs=2;
 end; /* when '=' */

 when('%')do;
 input c $CHAR1.;
 substr(hexstr,1,1)=c;
 input c $CHAR1.;
 substr(hexstr,2,1)=c;
 c=input(hexstr,$HEX2.);
 s(ixs)=trim(s(ixs))||c;
 ixc=ixc+2;
 if ixc gt &cntlen then do;
 /* if ixc increments past &cntlen -- big trouble*/
 put 'index loop overrun';
 abort;
 end; /* if ixc */
 end; /* when '%' */

 otherwise do;
 s(ixs)=trim(s(ixs))||c;
 end; /* otherwise */

 end; /* select(c) */
 end; /* do ixc */
 /* the last name value pair has no trailing & */
 name=left(name); value=left(value); output;
 put value=;
 stop; /* no more input after loop */

Figure 5, creating a dataset from the form's data

data _null_;
 set namevals;

 select(name);
 when('sasvar')do;
 call symput(name,trim(value));
 end;

 when('request')do;
 call symput(name,trim(value));
 end;
 end; /* select */
data _null_;
 set demo;
 length lbl $ 40;
 call label(&sasvar,lbl);
 call symput('saslabl',trim(lbl));

Figure 6, macro variables sasvar, request, and saslabl

Figure 5 shows the portion of the SAS
application which creates a SAS dataset
containing the NAME=VALUE pairs from the
data stream from the client which rendered the
form. This DATA step can be used in other
applications processing a form. Note that the
data are read from stdin with a lrecl of 1 and
recfm of f. The data step ends with a STOP, so
that the data are read by the DO loop which
reads &cntlen characters. The macro variable
cntlen was set from the environment variable as
shown in figure 4.

Within the DO loop a SELECT statement
looks for the delimiters. An array is used to
switch back and forth between appending to the
name and value variables. The final code
outside the loop catches the last pair, which
are not terminated by an &.

Figure 6 shows the creation of the
macro variables sasvar, request and saslabl. Sasvar
contains the name of the variable from the SAS
dataset to be processed and saslabl its label.
Request indicates the form in which the variable
is to be displayed. These are used later in the
application to select the form of output to be
returned to the client.

Figure 7 shows the portion of the SAS
application which creates the HTML document

%macro reply;

%if %upcase(&request)=TABLE %then
%do; /* table section */

 data _null_;
 put 'Executing table section';

 proc sort data=demo; by county;

 data _null_;
 file STDOUT line=curline col=curcol
 pagesize=50 n=ps;
 set demo end=last;
 retain firstlin c;
 if _n_ = 1 then do;
 put 'content-type: text/HTML';
 put;
 put '<' 'h1>';
 put "&saslabl";
 put '<' '/h1>';
 put '<' 'pre>';
 firstlin=curline; /* this is the first line of the table */
 c=1; /* this is the column in which to print */

 end;

 if curline ge (firstlin + 35) then do;
 put #(firstlin) @;
 c=c+25;
 end; /* if curlin */

 put @c cntynm @(c+14) &sasvar best9.;

 if last then put @1 #(firstlin + 36) '<' '/pre>';
 run;
%end; /* table section */

Figure 7, creating an HTML reply

 data _null_;
 file STDOUT;
 put 'content-type: application/postscript';
 put;

 goptions device=ps gsfname=STDOUT
 gsfmode=append nodisplay gaccess=sasgaedt
 gsflen=80 penmounts=255 characters
 chartype=9;

/* 9 is helvetica, 11 helv bold*/

Figure 8, to return a PostScript graphic under UNIX

containing the table of data requested. This
document is written by SAS to STDOUT which
is routed through httpd back to the client. This
stream of data begins with the string content
type: text/HTML followed by an empty line. This
tells the client to treat the rest of the data as
HTML and try to display it.

The reply created in figure 7 contains the
label of the selected variable in an H1 heading
followed by a <PRE> tag. This tag says that
what follows is pre-formatted text. The client
application will display it in a fixed spaced font
and will not justify it. The data are output in
three columns using SAS pointer controls. The
<PRE> tag is also useful for something like a

program listing were indentation is important,
since by default text in HTML files is justified.

Other content types might be a graphics
file, a sound file, a movie file, or whatever. The
client can launch a viewer (also called a helper)
application to present the file. This is how the
sample SAS application can display a PostScript
graphic.

Figure 8 shows the SAS code needed to
send a PostScript graphic back to the client. The
code to generate the map will not be shown
here. Any SAS/GRAPH procedure would be
able to use this technique.

Getting Started
To get started with WWW forms you

will need httpd and a client such as Mosaic. The
httpd binaries are available for anonymous ftp
from the directory:
ftp.ncsa.uiuc.edu/Web/ncsa_httpd/current
Mosaic for Windows is available from:
ftp.ncsa.uiuc.edu/PC/Mosaic/wmos20a4.zip
you may also need the file win32s.zip.

SAS, and SAS/GRAPH are registered
trademarks or trademarks of SAS Institute Inc.
in the USA and other countries.
Other brand and product names are registered
trademarks or trademarks of their respective
companies.

Contact Information
Larry Hoyle email:lhoyle@stat1.cc.ukans.edu
IPPBR voice:(913) 864-3701
607 Blake Hall fax:(913) 864-3683
University of Kansas
Lawrence, KS, 66045-2960

