
1

SAS Software and the WWW - What Next?
Larry Hoyle, Institute for Public Policy and Business Research

University of Kansas, Lawrence, Kansas

ABSTRACT
A brief overview of World Wide Web and the use of SAS
as an information server over World Wide Web will be
followed by a discussion of recent developments which
allow for interactive information visualization over the
Web. This will include a discussion of VRML and the
JAVA language. The discussion will be illustrated by live
examples of Web services implemented in SAS.

INTRODUCTION
The World Wide Web (WWW) is distributed hypermedia.
WWW documents can be text, graphics, sounds, or
executable programs. A WWW client (or browser)
communicates with a WWW server over the internet.
Most WWW documents are written in Hypertext Markup
Language (HTML). WWW servers have facilities for
launching and passing parameters to applications like
SAS.
SAS can be used to generate static documents or
graphics to be distributed by standard WWW servers.
SAS can also generate and pass back WWW documents
or graphics on the fly. For further details on using SAS
dynamically with the WWW see: Hoyle - Connecting SAS
to the World Wide Web - Forms Across the Internet.

The first section of this paper will show the Institute’s
Kansas Economic Outlook WWW pages. These are an
example of a text document with links to HTML tables
which in turn have links to graphic image files containing
plots of the data in the tables. These pages are a static
collection of files. The tables and graphics files are all
generated by a SAS program which is run once a quarter.

The remainder of the paper will show recent additions to
the capabilities of the WWW which allow for 3D
visualization of data. Viewing the data requires the
appropriate browser software which is available for a
number of platforms.

The second section will show a Virtual Reality Modeling
Language (VRML) plot of the Fisher Iris data set. A
VRML file describes a 3D scene. This paper will use
VRML as a tool for visualizing 4D data. This file was
written by a SAS program included in the paper.

The final section will show the same data as displayed by
a Java applet. Java is a C++ based language designed by
SUN for developing WWW applications. The latest
versions of Netscape are capable of running Java
applets. Microsoft has also announced that it will support
Java.

An applet is a Java program pre-complied for use by a
Java aware WWW client. When the client requests it, the
applet is transferred across the internet and then
executed on the client machine. For this example a SAS
program wrote the data input for the Java applet.

Both VRML and Java allow a user to manipulate 3
dimensional data on a 2 dimensional display. Both
achieve the illusion of depth through movement and cues
such as shading and size. These capabilities are built into
VRML but must be programmed into a Java applet.

TABLES and GRAPHS

Kansas Economic Outlook is published quarterly by the
Institute.for Public Policy and Business Research. It
presents a forecast generated by the Kansas
Econometric Model which is implemented in SAS/ETS.
Once the forecast is generated, a SAS program writes
tables of historical and forecasted data out into Excel
spreadsheets and HTML files. The program also
generates a graphics file in GIF format for each line of
each table.

The tables are written with HTML codes which link the
row headings to the graphics files. Figure 1 shows one of
the tables as it appears in Netscape. The SAS macro and
call which wrote the table are listed in Appendix A.

Notice that the labels for the rows of the table are
underlined. They also appear on screen in color. These
attributes identify them as hyperlinks. When you click on
Labor Force , your WWW browser will fetch the file
pointed to by the link. Figure 2 shows that graph.

The graph in figure 2 was produced by the SAS macro
and call listed in Appendix B.

Where on the WWW

Kansas Economic Outlook:
http://www.ukans.edu/cwis/units/IPPBR/keo/text.htm

Fisher Iris data in VRML:
http://www.ukans.edu/cwis/units/IPPBR/vrml/irisvrml.ht

ml

Fisher Iris Data in Java Applet:
http://www.ukans.edu/cwis/units/IPPBR/java/iris/irisglyph.html

Figure 1 - An HTML3 table produced with SAS

2

VIRTUAL REALITY MODELING LANGUAGE (VRML)

Virtual Reality Modeling Language is a language for
describing objects in a 3 dimensional scene. Objects can
be translated and rotated. Lighting and camera positions
can also be described. Both Microsoft’s Internet Explorer
and Netscape have the capability of viewing VRML within
the browser.

Table 1a shows a snippet of VRML code which places a
cone at the (x,y,z) coordinates (14,50,33), It also rotates
that cone about the z axis by 0.098 radians. The circle at
the base of the cone has a radius of 0.6 and the height of
the cone is 3. The description of the cone is surrounded
by a Separator command which serves to restrict the
rotation and translation to just the one cone. The VRML
file which produced Figure 3 has a similar section of code
for each cone.

Table 1b shows the VRML code which sets the lighting
and camera position for figure 3. The camera position
describes the view into the scene when the file is opened.

You can change that view with browser controls when
viewing the file.

The browser automatically interprets the document as
VRML and displays it graphically when the server
precedes it with the MIME type for VRML which is:
 x-world/x-vrml.

This code was written by the SAS program in Appendix
C. The whole VRML file produces the image in figure 3
when viewed by a VRML capable browser. When viewing
the scene you can fly through it, or rotate it. VRML can
also describe objects as links to other WWW files.

In figure 3 the Fisher iris data are displayed in a form of
glyph plot1 with each observation displayed as a cone.

The angular orientation of each cone is used to display a
variable (petal width). The other three variables (petal
length, sepal length, and sepal width) are displayed
spatially. Each species of iris is displayed with a different
color. The species Setosa displays in red and is the
cluster to the right in figure 3. The species Versicolor
displays in green and Virginica in blue (the blue shows
darker in this paper). These species form the large cluster
on the left in figure 3. The Versicolor irises, which fall
toward the center of the figure, mostly show an upward
tilt and the Virginica a level or downward tilt.

1 For a discussion of glyph plots see Friendly, page 395.

Figure 2 - A GIF graphic from device IMGGIF

cone 1
 Separator {
 Material {
 diffuseColor 1 0 0
 }
 Transform {
 translation 14 50 33
 rotation 0 0 1 0.0981747704
 }
 Cone {
 bottomRadius 0.6
 height 3
 }
 } # separator for cone
end cone 1

Table 1a One cone in VRML

Figure 3 - A VRML glyph plot

#VRML V1.0 ascii
Separator {
 DirectionalLight {
 direction 0 0 1 # Light from viewer into scene
 }
 PerspectiveCamera {
 position 29.5 18 -60
 orientation 0 0.95 -0.15 3.14
 focalDistance 24
 heightAngle 0.755
 }

Table 1b Setting up the lights and camera in VRML

3

JAVA

While Java currently has no native 3D capability it can be
used for 3D visualization. Java is a language, developed
by Sun, based on C++ with some of the more dangerous
features removed. It is an object oriented language
designed for writing cross platform, internet aware
applications. A particular kind of Java program, called an
applet, is designed to be run by a WWW browser. Java
applets can retrieve data and other applets from across
the internet. This allows Java applets to dynamically
extend the capabilities of your browser.

Even if your browser doesn’t know how to display an
interactive glyph plot, it can access a WWW page which
includes a reference to a Java applet that does so.

Figure 4 shows the Fisher Iris data in a 3D glyph plot
displayed by a Java applet. As in the preceding example
the angle of the glyph represents one dimension and the
other three are represented spatially. In this case the
glyph is a whisker radiating from a small sphere.

As with the VRML browser this Java applet allows you to
rotate the data as if they are embedded in a transparent
trackball. The applet enhances the perception of depth by
shrinking and graying objects as they move to the back.

This Java applet is custom designed to display a glyph
plot. A SAS program writes a flat file for the applet. Table
2 shows a portion of the flat file for this example.
Appendix D shows the SAS code which wrote the file for
the Java applet. In this case the file is static, but a SAS
program could write a file “on-the-fly” and generate the
HTML to point the Java applet at it.

The Java code for the glyph applet is too lengthy for this
paper but can be found at:
http://www.ukans.edu/cwis/units/IPPBR/java/iris/irisglyph.html

It was adapted from the XYZApp.java sample applet
included with the Java Developer’s Kit.

A Java applet is invoked by a special HTML tag:
<applet>. The applet tag has a required parameter which
points to the location of the applet. It may have additional
parameters defined by the applet itself.

Table 3 shows the HTML file for Figure 4.. The applet tag
also contains optional parameters which set the width and
height of the display window for the applet. The tag in
table 3 sets the window to 600 pixels wide and 400 pixels
high.

The XYZAppGlyph applet has one additional parameter
named “model” The model parameter points to the data
file which contains the parameters for each iris

Writing Java - a Simple Graph Applet

The applet in Table 4a, b, & c was constructed to show
complete code for an interactive graphical applet. The
data it displays are wired in via a function, but the applet
could easily be modified to input data and other
parameters from a SAS program.

Table 4a contains introductory comments and statements
linking in code from the Java Abstract Window Toolkit
(AWT) which is already available in the browser .
Java is an object oriented language. Individual objects are
described in terms of the class to which they belong. The
SimpleGraph applet defines two classes, SimpleGraph
and OvalPoint. An instance of the SimpleGraph class (a

/* SimpleGraph.java */
/* Larry Hoyle, University of Kansas, December 1995

*/
/* SimpleGraph displays an xy plot of a function */
/* computed over each x value in the applet window. */
/* Clicking the mouse window will highlight the point */
/* corresponding to the x value of the click. */

import java.awt.Graphics;
import java.awt.Event;
import java.awt.Color;

Table 4a SimpleGraph.java part 1

Figure 4 - A glyph plot from a Java applet

<html>
<head>
<title>A Java Glyph graph - Fisher Iris data</title>
</head>
<body>
<H2>A Java Glyph graph - Fisher Iris data</H2>
<hr>
<applet code=XYZAppGlyph.class width=600 height=400>
<param name=model value=models/iris.gly>
</applet>
<hr>
Please mail comments to Larry Hoyle:

l-hoyle@ukans.edu

TABLE 3 - HTML for Java Glyph Graph

r 14 50 33 0.0981747704

Table 2 One record from the model file iris.gly

4

SimpleGraph object) is created when an HTML file
references it with the <applet> tag.

The SimpleGraph applet in turn creates one instance of
an OvalPoint for each point it will display in the applet
window. It creates one point for each column of pixels in
the window.

The first section of table 4b defines variables, an array,
and a function. The init method (subroutine) sets up an
array of OvalPoints, one for each x value in the graph.
The function f is used to compute the y value for each
point. Each point also has a width, a height, and an
attribute of picked (true or false) as defined in the first
part of 4c.

Each point also knows how to paint itself on the screen as
defined in the paint method in table 4c. When picked, a
point displays as a red filled oval with its coordinates
listed to the right. When not picked the oval is black and
not filled. The point’s width and height attributes
determine the size of the oval.

Picking and unpicking a point is accomplished by the
MouseDown method shown in Table 4b. The MouseDown
method is called by the browser whenever the mouse
button goes down. SimpleGraph’s MouseDown method
looks at the x coordinate of the cursor where the click
occurred and flips the picked attribute of the OvalPoint
with that coordinate. It also invokes the applet’s repaint
method.

The SimpleGraph applet also has a paint method which is
invoked each time the browser repaints the applet. This
paint method loops through the array of OvalPoints and
calls each one’s paint method.

SimpleGraph’s MouseDown method can access the
picked attribute of each OvalPoint directly since picked is
declared as public. The variables x, y, width, height, and
picked of class OvalPoint are instance variables, that is
there is a separate copy of them for each instance of an
OvalPoint. These instances are created with the new
operator in table 4b. When a new instance is created
OvalPoint’s constructor is invoked. This is the section of
table 4c which begins: “OvalPoint(int xvar, int yvar, int w,
int h){“. This constructor initializes x, y, width, and height.

public class SimpleGraph extends java.applet.Applet {
 OvalPoint OvalPoints[];
 int owide=6;
 int ohigh=6;
 int startwidth, startheight;
 double f(double x) {

return (Math.sin(x/20) + 1) * size().height / 2;
 }

// the array of points has startwidth elements
// even if the applet is resized

 public void init() {
 startwidth = (int) size().width;
 startheight = (int) size().height;
 OvalPoints = new OvalPoint[startwidth];
 for (int x = 0 ; x < startwidth ; x++) {
 OvalPoints[x] = new OvalPoint(x, (int) f(x), owide, ohigh);
 }

 } // mouseDown toggles a point's picked attribute

 public boolean mouseDown(Event e, int mx, int my){
 OvalPoints[mx].picked = ! OvalPoints[mx].picked;
 repaint();
 return true;
 }

// the applet's paint invokes each point's paint
 public void paint(Graphics g) {
 for (int x = 0 ; x < startwidth ; x++) {
 OvalPoints[x].paint(g) ;
 }
 }
} // end SimpleGraph

Table 4b SimpleGraph.java part 2 The SimpleGraph class

// each point has a location (x,y)
// a width, a height, and a picked attribute

class OvalPoint{
 public int x, y, width, height;
 public boolean picked=false;

 OvalPoint(int xvar, int yvar, int w, int h){
 x=xvar;
 y=yvar;
 width=w;
 height=h;
 }

// when picked, the point is labeled and filled
 public void paint(Graphics g) {
 if (picked){
 g.setColor(Color.red);
 g.drawString("x=" + x + ", y=" + y,x+width,y+width);
 g.fillOval(x, y, width, height);
 }
 else{
 g.setColor(Color.black);
 g.drawOval(x, y, width, height);
 }
 }
} // end OvalPoint

Table 4c SimpleGraph.java part 3 - The OvalPoint class

Figure 5 - The display from applet SimpleGraph

5

While trivial itself, the SimpleGraph applet shows the
worth of Java for publishing interactive statistical
graphics. Information about the graphic can be available
with a mouse click without cluttering up the view. The
viewer applet could also zoom and pan the graphic.

CONCLUSION

This paper has been concerned with two main themes.
First - the World Wide Web has enabled wonderful new
tools for distribution of information visualization. Three
dimensional and interactive viewers which are standard
across multiple hardware platforms and operating
systems will bring publishing to a new level.

The second issue has to do with what the new technology
means to the SASsystem. Java, or whatever evolves like
it, brings client server computing and a common graphical
user interface to everyone with an inexpensive browser.

The Pure Speculation Part

SAS Institute has staff with the expertise to create a suite
of Java applets tightly integrated with the internals of the
SAS system. The possibilities are tantalizing. It would be
possible, for example, to have output from
SAS/INSIGHT to a 3D rotation applet to show an
interactive display of a particular 3D view of some
multidimensional data set. SAS/SPECTRAVIEW could
output to an applet which would allow moving a cutting
plane through a data subset. SAS/GIS could output to a
map applet which would allow popup information about a
geographic unit.

While we wait hopefully for such tools, the current SAS
system has the flexibility to do a great deal with user
designed applets and with VRML files.

REFERENCES
Bell, G., Parisi A., Pesce, M.,. The Virtual Reality
Modeling Language,Version 1.0 Specification, available
at: http://vrml.wired.com/vrml.tech/vrml10-3.html

Clifford, Norman, Kansas Economic Outlook, Volume 1
Number 4, Lawrence, KS: Institute for Public Policy and
Business Research, University of Kansas. and available
at: http://www.ukans.edu/cwis/units/IPPBR/keo/text.htm

Hoyle, Larry, Connecting SAS to the World Wide Web -
Forms Across the Internet presented at MWSUG94 and
available at:
ww.ukans.edu/cwis/units/IPPBR/sashttp/mwsug94/mwsug94.html

SAS Institute Inc., SAS Institute, available at:
http://www.sas.com/

SAS Institute Inc. (Friendly, Michael), SAS System for
Statistical Graphics, First Edition, Cary, NC: SAS Institute
Inc. 1991. 697pp.

Sun Microsystems, Inc., Java: Programming for the
Internet, available at: http://java.sun.com/

APPENDIX A - HTML Table Macro

Figure 1 was produced by this call
%HTMLTAB(Y,step17, htable1, t1labs, ncols=5,
 tnum=1,
 fmt=7.1,
 t1=%str(Table 1),
 t2=%str(Kansas Forecast - Summary),
 f1=%str(Source: Kansas Econometric Model, IPPBR, University of
Kansas.),
 f2=%str(Percent change is the percent change from the previous year.),
 f3=%str(Labor Force and Employment in thousands.),
 f4=%str(Personal income in millions of current dollars.));

The macro definition:
%macro HTMLTAB(datfmt,
 dfile,
 tfile,
 lfile,
 tnum=,
 ncols=1,
 fmt=,
 t1=,
 t2=,
 t3=,
 f1=,
 f2=,
 f3=,
 f4=);

/* write a table to an HTML file */
/* datfmt - The format of the date
 Y=year Q=quarter */
/* dfile - the data file from proc transpose */
/* tfile - the output table filename */
/* tnum - table number */
/* ncols - number of columns */
/* lfile - the file with row labels */
/* fmt - format for numeric cells */
/* t1 - first title line */
/* t2 - second title line */
/* t3 - third title line */
/* f_ - footer lines */
/* NOTE: dfile and lfile must have the same length */

/* HTML 3 Table codes:
<table border></table>

wraps the whole table
<caption> ... </caption>

wraps the caption
<tr>

starts a table row
<th>

starts a table header
<td>

starts a table cell
link text

when link text is clicked retrieve URL

line break
*/

6

 Data _NULL_;
 merge &lfile &dfile end=theend;
 file &tfile lrecl = 1000;
 rownum = _n_-1;
 m=-1;
 if _n_=1 then
 do;

/* first record - define table, print headers */

 put '<table border>';
 put '<caption>';
 put "&t1
";
 put "&t2
";
 put "&t3
";
 put '</caption>';
 put '<tr>';
 put '<th>' rlabel $40.
 %DO ixcol=1 %TO &ncols;
 %IF &datfmt=Y %THEN '<td align=right>'
 col&ixcol YEAR4. ;
 %ELSE
 %DO;
 %IF &datfmt=Q %THEN '<td align=right>'
 col&ixcol YEAR2. '/' col&ixcol QTR1. ;
 %ELSE '<td align=right>' col&ixcol ;
 %END;
 %END; /* ixcol=1 */
 ;
 end; /* if _n_ */

/* row labels are anchors */

 else Put '<tr> <th align=left>'
 "'
 rlabel $40. ''

/* data cells */

 %DO ixcol=1 %TO &ncols;
 '<td align=right>' col&ixcol &fmt
 %END;
 ;

/* footnotes */

 if theend then
 do;
 totcols=&ncols+1;
 %IF &f1 ne %THEN put "<tr> <th colspan="
 totcols "> &f1";;
 %IF &f2 ne %THEN put "&f2";;
 %IF &f3 ne %THEN put "&f3";;
 %IF &f4 ne %THEN put "&f4";;
 put '</table>';

 end; /* if theend */
%mend HTMLTAB;

APPENDIX B - Drawing a GIF Graphic

Figure 2 was produced by this call

%rowplot(f=T1R1,
 y=KCLFa,
 i=spline,
 ylab=,
 t=Labor Force,
 x=year, d=step16);

The macro definition:
%macro rowplot(t=,
 i=,
 x=,
 xlab=,
 y=,
 ylab=,
 d=,
 f=);

/* t= title
* i= interpolation (spline or needle)
* x= x variable name (date or year)
* xlab= x axis label
* y= y variable name
* ylab= y axis label
* d= data set name
* f= output file name
*/
filename grout "w:\transfer\keo\&issue\&f..gif";

/* IMGGIF is the driver for GIF files */

goptions reset=(axis, legend, pattern, symbol, title,
footnote) norotate
 hpos=0 vpos=0 htext=2 cback=white ;
goptions device=IMGGIF gsfmode=replace
gsfname=grout ctext=blue
 graphrc interpol=join;

 title1
 "&t";
symbol1 c=DEFAULT
 i=&i
 l=1
 v=DOT
 c=black
 ;
axis1
 label=(h=3 "&xlab")
 color=blue
 width=2.0
 ;
axis2
 label=(h=3 "&ylab")
 color=blue
 width=2.0
 ;
axis3
 color=blue

7

 width=2.0
 ;

proc gplot data=&d ;
 plot &y * &x /
 haxis=axis1
 vaxis=axis2
 ;
run;
%mend rowplot;

APPENDIX C - Writing VRML
/*irisvrml.sas - make a vrml file from SAS x y z data */

/* Larry Hoyle, IPPBR, University of Kansas */
/* l-hoyle@ukans.edu */

/* use the Fischer Iris data from candiex.sas
*/

/* use the angle computation from Friendly, M. */
/* SAS System for Statistical Graphics */

filename irvrml 'c:\ddrive\sugi21\vrml\iris.wrl';
 file irvrml;

proc format;
 value specname
 1='SETOSA '
 2='VERSICOLOR'
 3='VIRGINICA ';
 value specchar
 1='S'
 2='O'
 3='V';
run;

data iris;
 title 'Fisher (1936) Iris Data';
 input sepallen sepalwid petallen petalwid species @@;
 format species specname.;
 label sepallen='Sepal Length in mm.'
 sepalwid='Sepal Width in mm.'
 petallen='Petal Length in mm.'
 petalwid='Petal Width in mm.';

/* The data for this example can be found in */
/* the program candiex.sas from the SAS sample */
/* library */

/* find the bounding box for the data */’

proc means data=iris min max;
 var petalwid petallen sepalwid sepallen ;
 output out=range min=pwmin plmin swmin slmin
 max=pwmax plmax swmax slmax;

/* compute the glyph angle */

data xyz;
 set iris;
 if _n_=1 then set range;

 p1 = (petalwid-pwmin) / (pwmax - pwmin);

 x=petallen;
 y=sepallen;
 z=sepalwid;
 angle = 135 * p1 * arcos(-1)/180;
 xg = x + 6 * cos(angle);
 yg = y + 6 * sin(angle);

/* write the VRML */

data _null_;
set xyz nobs=n end=last;

 if _n_=1 then do;
 put '#VRML V1.0 ascii';
 put 'Separator {';

 put ' DirectionalLight {';
 put ' direction 0 0 1 # Light from viewer into
scene';
 put ' }';

 put ' PerspectiveCamera {';
 camx = (plmax - plmin) / 2;
 camy = (slmax - slmin) / 2;
 camz = ((swmax - swmin) / 2) - (3 * (swmax - swmin)) ;
 fd = swmax - swmin;
 put ' position 'camx camy camz;
 put ' orientation 0 0.95 -0.15 3.14';
 put ' focalDistance ' fd;
 put ' heightAngle 0.755';
 put ' }';
 end; /* _n_=1 */

/* output the point as a cone */

 put '# cone '_n_;
 put ' Separator {';
 put ' Material {';
 put ' diffuseColor '@;
 select (species);
 when (1) put '1 0 0';
 when (2) put '0 1 0';
 when (3) put '0 0 1';
 otherwise put '0.5 0.5 0.5';
 end; /* select */

 put ' }';

 put ' Transform {';
 put ' translation ' x y z;
 put ' rotation 0 0 1 ' angle;
 put ' }';

8

 put ' Cone {';
 put ' bottomRadius 0.6';
 put ' height 3';
 put ' }';
 put ' } # separator for cone';
 put '# end cone '_n_;
 put '# ';

 if last then do;
 put '}';

 end; /* do; */
run;

APPENDIX D - Writing a File for XYZAppGlyph
/*irisjava.sas - make a data file from SAS x y z data */
/* the file will be used by XYZAppGlyph.java */

/* Larry Hoyle, IPPBR, University of Kansas, Nov. 1995 */

/* Uses the Fischer Iris data from the SAS Institute
 sample program candiex.sas */
/* angle computation from Friendly, M. */
/* SAS System for Statistical Graphics */

filename irjava
'c:\apps\java\demo\XYZGlyph\models\iris.gly';
proc format;
 value specname
 1='SETOSA '
 2='VERSICOLOR'
 3='VIRGINICA ';
 value specchar
 1='S'
 2='O'
 3='V';
run;

proc means data=iris min max;
 var petalwid petallen sepalwid sepallen ;
 output out=range min=pwmin plmin swmin slmin
 max=pwmax plmax swmax slmax;

data xyz;
 set iris;
 if _n_=1 then set range;

 p1 = (petalwid-pwmin) / (pwmax - pwmin);

 x=petallen;
 y=sepallen;
 z=sepalwid;
 angle = 135 * p1 * arcos(-1)/180;
 xg = x + 6 * cos(angle);
 yg = y + 6 * sin(angle);

data _null_;
file irjava;
 set xyz nobs=n end=last;

 select (species);
 when (1) put 'r ' x y z angle;
 when (2) put 'g ' x y z angle;
 when (3) put 'b ' x y z angle;

 otherwise ;
 end; /* select */
run;

ACKNOWLEDGEMENTS

SAS, SAS/ETS, SAS/GIS, SAS/GRAPH, SAS/INSIGHT,
SAS/SPECTRAVIEW are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other
countries. indicates a USA registration.

Netscape Communications, Netscape, Netscape
Navigator and the Netscape Communications logo are
trademarks of Netscape Communications Corporation.

Sun, and Java are trademarks or registered trademarks
of Sun Microsystems, Inc.

Other brand and product names are registered
trademarks or trademarks of their respective companies.

Larry Hoyle
IPPBR, University of Kansas
607 Blake Hall
Lawrence, KS, 66045-2960
(913) 864-3701
l-hoyle@ukans.edu
http://www.ukans.edu/cwis/units/IPPBR/IPPBR_main.html

