
1

A Hands-on Introduction to Creating Dynamic Web Pages

Mickey Waxman, Academic Computing, University of Kansas
Larry Hoyle, IPPBR, University of Kansas

ABSTRACT
This hands-on workshop will give a basic introduction to
using SAS Application Dispatcher to create World Wide
Web pages on demand. Workshop participants will learn
how to create an HTML form which will invoke a SAS
program on a server via the Application Dispatcher. They
will also learn how to construct a SAS program which
produces web pages upon request from such an HTML
form.
No previous knowledge of HTML is required.

Overview
Consider the following transaction. Jane Doe fires up her
Web browser and browses her way to my Web page.
Looking at my Web page she finds she can request further
information on a variety of topics. She makes a few
selections, and clicks on the Submit button. Then SAS on
my server wakes up, processes a set of data and sends a
bar chart back to her browser showing the information she
requested.

What did I have to do to make this possible? Two things,
essentially: (1) create a Web page that contains a form
that references my SAS program and (2) write the SAS
program that collaborates with this Web page. This
workshop teaches the basics on how to create these two
components.

Figure 1. Jane’s Web browser sends a request to my
Web server asking for a copy of my Web page. This
HTML file is duly sent to Jane’s computer where her
browser interprets the HTML and displays my Web page.
In her browser Jane selects options and enters data in the
HTML form specifying what further information she is
requesting. Then she clicks on the Submit button.

Figure 2. Jane’s browser assembles her selections into a
message, which is sent to my Web server. My Web server
sees that the request is addressed to my Application
Broker, starts the Broker, a CGI program included in the
SAS/IntrNet package, and passes it the message from
Jane’s browser. The Application Broker interprets and
processes the request data and then establishes contact
with my Application Server. The Application Server, a
SAS session waiting for action, processes the input from
the Broker, creates a fileref named _webout, which points
back through the Broker to Jane’s browser, and creates a
set of macro variables containing the request data. The
Application Server then finds the specified SAS program
that I wrote and runs it with those predefined macro
variables. The macro variables are what convey
information from Jane’s browser to my SAS program.
Output from this SAS program is written to _webout, which
streams the output to the Application Broker. The broker
does a little processing of the output before passing it to
the Web server. The Web server then sends the output to
Jane’s browser.

That’s probably more detail than care to know, but
someday you’ll thank us for this.

1. Get my.html

Jane’s
Browser

My
Web Server

My.html

Browser Server

3. my.html

2.

Figure 1, Jane gets web page

1. Get Broker
graph=bar var=x
_Program=my.sas
_Service=myapp

Jane’s
Browser

My
Web Server

Browser Server

Figure 2, Jane runs my SAS program

Broker

2. Launch Broker
graph=bar var=x
_Program=graph
_Service=myapp

Application Server “myapp”

3. run my.sas graph=bar
var=x

My.sas

4.

5.output
(graph) sent
back

6.

7.

Hands-on WorkshopsHands-on Workshops

2

Example Applications

This workshop will use five example
applications, each of which has an HTML
file and a SAS program. Thumbnails of
what the user sees when using the
applications are shown on this page, with
the HTML form on the left and the output
from the SAS program, as delivered back
to the browser, on the right.

The first example, in the first row, is a
simple “Howdy World” program. It also
displays the time to show that an
application with no input values can
deliver dynamic information.

The second application prints back the
value of an input parameter.

The third application sends back the
value of the input field in a graphic image
file (GIF).

The fourth application uses an input
parameter to choose between two
procedures.

The final application shows some
debugging tools.

HTML Form Results from SAS

Hands-on WorkshopsHands-on Workshops

3

Howdy World
This Dispatcher application runs a SAS program that
prints a message and the time. This is a dynamic
application in that it produces a different page each time it
is run, but it requires no input parameters from the user.

In order for the SAS program to be run, the HTML file
which requests it must contain three references: a pointer
to SAS Institute supplied program named “Broker”, the
name of a broker service, and a reference to the SAS
program to be run.

 The pointer to Broker appears in the “action=” clause of
the HTML “FORM” tag. Broker itself is an executable
which your system administrator configures to have one or
more “services”. Each service corresponds to one or more
SAS sessions running on a server.

The name of the service to be used appears as the value
of a field named “_SERVICE” in the HTML form. It can be
user selectable or it can appear in a “hidden” field as it
does in figure 3. In this case the value “wkshp124” does
not appear on screen for the user since the type of the
INPUT field is “hidden”. It is, however, passed to the
server as “_SERVICE=wkshp124” when the form is
submitted.

The name of the SAS program to run in figure3 is
“howdy.sas”. Its location is pointed to by the libname
“clientXX”. This reference is passed to the server
as”_PROGRAM=clientXX.howdy.sas”. Dispatcher
applications may also run source programs, SCL code, or
macros in SAS catalog entries,

The SAS program, clientXX.howdy.sas, which is
referenced by the “_PROGRAM” field above, is shown in
figure 4. The important features of this program are the
reference to the output fileref “_webout”, and the HTTP
header which is the first output sent to _webout.

When Broker sets up for howdy.sas to be run, it inserts a
fileref to _webout at the beginning of the code to be run.
Anything written to this fileref ends up being sent back to
the browser from which the form in figure 3 was submitted.

In order for the browser to interpret this output correctly, it
must be preceeded by a “Hypertext Transfer Protocol
(HTTP)” header. This header must end with a null line.
Note the “/” at the end of the highlighted “put” statement in
figure 4. The “/” is necessary in that it generates the
needed null line. The HTTP header in this example,
’Content-type: text/html’ , informs the browser that what
follows is to be interpreted as HTML. While many
browsers will display output without any HTML codes, it is
a good idea to include at least the required elements:
<HTML></HTML>, <HEAD></HEAD>, and
<BODY></BODY>.

<HTML>

 <HEAD>
 <TITLE>Howdy, A no input field form</TITLE>
 </HEAD>

 <BODY>

 <FORM action=’http://brokerpath/broker’>

 <INPUT type=hidden
name=_SERVICE
value=wkshp124>

 <INPUT type=hidden
name=_PROGRAM
value=clientXX.howdy.sas>

 <INPUT type=submit
value="run a SAS program ">

 </FORM>

 </BODY>

</HTML>

figure 3, howdy.htm

/* --- */
/* howdy.sas - a hello world program */
/* for trying the application dispatcher. */
/* -- */

data _null_;

file _webout;

t=time();
d=date();

put ’Content-type: text/html’/;

put ’<H1>Howdy, a SAS program wrote this on:</H1>’;
put d date7. ’ at: ’ t time. ;

run;

figure 4, clientXX.howdy.sas

Hands-on WorkshopsHands-on Workshops

4

A Form With One Input Field
The second example, shown in figure 5, adds a field to the
form into which a user can enter information. In this
particular case the field has a name of “XYZ”, and has no
default value. If a user were to enter the value “13” into the
field, the browser would send “XYZ=13” to Broker when
the form was submitted. A separate name=value pair is
sent for each field entered in the form.

The SAS program clientXX.1field.sas, shown in figure 6,
receives the value “XYZ” as a predefined macro variable.
Broker sets up this macro variable automatically for each
name=value pair it receives. It is a good idea, though, to
have a %global statement for each parameter the SAS
program references. This will force the creation of an
empty macro variable in case no name=value pair was
sent.

An Application Dispatcher program can reference a macro
variable containing a form parameter (e.g. XYZ) as:
”&XYZ”;
or
%superq(XYZ);
or
with symget(‘XYZ’);
Parameters are also available to an Application Dispatcher
SCL program via an SCL list.

Using the “&XYZ” method, however, is a security risk. It
can be used to insert undesired SAS code into your
application. The symget method is safest. Figure 7 shows
a sample macro to strip out dangerous characters from the
form fields.

Figure 6 also shows the use of the “%out2html” macro to
format SAS output as HTML. Details of the HTML
formatting tools will be presented in another workshop.

Note, though, that this example doesn’t explicitly write an
HTTP header, unlike the clientXX.howdy.sas example.
This is because the “runmode=s” option of the %out2html
macro indicates that the application is running in “server”
mode. When both “runmode=s” and “openmode=replace”
are specified, an HTTP header is automatically written.

<HTML>
 <HEAD>
 <TITLE>A one field form</TITLE>
 </HEAD>
 <BODY>

 <FORM action=’http://brokerpath/broker’>
 <INPUT type=hidden

name=_SERVICE
value=wkshp124>

 <INPUT type=hidden
name=_PROGRAM
value=clientXX.1field.sas>

 <INPUT type=text
name=XYZ> the parameter "XYZ"<P>

<INPUT type=submit
value=”send it to a SAS program”>

 </FORM>
 </BODY>
</HTML> figure 5, 1field.htm

/* --- */
/* 1field.sas - Reads one field from the browser (form) */
/* --- */

%global XYZ;

 options nosource nonotes;
 /* -- */
 /* send the log window to the browser */
 /* -- */

%out2htm(capture=on, window=log);

data _null_;

 sg=symget(’XYZ’);

 put "Field XYZ contained: " / sg ;

run;

%out2htm(htmlfref=_webout,
 capture=off,
 window=log,
 runmode=s,
 openmode=replace);

figure 6, clientXX.1field.sas

%macro noexit(myname);
data _null_;
m = symget("&myname");
n = translate(trim(m),’____________________’,’%&"()’’;,’);
call symput("&myname",n);
run;
%mend noexit;

figure 7, a macro to remove nasty characters

Hands-on WorkshopsHands-on Workshops

5

Creating a Graphic
The next example has a form which has 2 user editable
fields. The second field is a “select box” which allows the
user to select from a list of options. When the form is
submitted, the browser receives a graphic image (a GIF
file).

The SAS program clientXX.slide.sas first writes an HTTP
header to tell the browser that a GIF graphic follows. That
header is ’Content-type: image/gif. Note that the SAS
program should write no other text to _webout, otherwise
the browser would see a corrupted gif file.

Selecting one of the GIF drivers creates the graphic file. In
figure 9 the driver is “gif160” which produces an image
160 pixels across. Specifying the gsfname=_webout
graphic option results in the graphic being sent back to the
browser. The gsfmode=replace option causes the driver to
write a proper internal header for the graphic.

The actual creation of the graphic can be done by a
number of components of the SAS system. In figure 9,
PROC GSLIDE is used to create a slide from the contents
of the XYZ field.

<HTML>
 <HEAD>
 <TITLE>Make a GIF file</TITLE>
 </HEAD>
 <BODY>
 <FORM action=’http://brokerpath/broker’>
 <INPUT type=hidden

name=_SERVICE value=wkshp124>
 <INPUT type=hidden

name=_PROGRAM
value=clientXX.slide.sas>

 The text for the graphic

 <INPUT type=text name=XYZ>

 <P>The text color

 <SELECT name=tcolor size=4>
 <OPTION value="blue" SELECTED>Blue </OPTION>
 <OPTION value="red">ruby red</OPTION>
 <OPTION value="green">oz green</OPTION>
 <OPTION value="black">plain old black</OPTION>
 </SELECT>

 <P><INPUT type=submit value="send me a GIF file">
 </FORM>
 </BODY>
</HTML>

figure 8, slide.htm

/* --- */
/* slide.sas - show the input as a GIF file */
/* --- */

%global XYZ TCOLOR;

/* these statments can be used to test without the
application dispatcher
filename _webout ’d:\InetPub\wwwroot\sugi23\grphout.gif’;
%let XYZ=testme;
*/

 /* --- */
 /* generate an HTTP header for a GIF file */
 /* don’t run this data step if testing locally */
 /* -- */
data _null_;
 file _webout;
 put ’Content-type: image/gif’/;

run;

 /* ----------------------------------- */
 /* use a GIF graphics device */
 /* ----------------------------------- */
goptions device=gif160
 gsfmode=replace
 gsfname=_webout;

 /* -- */
 /* set the color from an input parameter */
 /* -- */

goptions ctitle=%superQ(TCOLOR);

 /* ----------------------------- */
 /* generate the graphic */
 /* ----------------------------- */

proc gslide frame;
 note h=10 move=(8,15) f=brush %superQ(XYZ);

run;
figure 9, clientXX.slide.sas

Hands-on WorkshopsHands-on Workshops

6

Selecting Code
The Dispatcher program clientXX.iffy.sas is shown in the 4
part figure 10.This application shows the use of an input
field to select code to be executed.
The initial section in figure 10a creates a test dataset.

Figure 10d contains the code which actually makes the
selection. If the value of the input field is “A”, then the
macro “CHOICEA” is invoked. Input of “B” causes
“CHOICEB” to be invoked. Any other input invokes
“OOPS”.
Figure 10b contains the macro definition for CHOICEA.
It uses the “%ds2htm” macro to send the browser the test
dataset as an HTML table. Figure 10c contains the
definitions for CHOICEB and OOPS. ChoiceB uses the
tab2htm macro to send back an HTML table from a PROC
TABULATE.

 /* --- */
 /* the second choice - tabulate to HTML formatting tool */
 /* -- */
%macro CHOICEB;

 %tab2htm(capture=on);

 options linesize=96 pagesize=54 nocenter nodate nonumber;
 title ’Example: Tabulated TEST dataset’;
 proc tabulate data=WORK.TEST
 formchar=’82838485868788898a8b8c’x;
 table Y ALL , (Z W) * (’MEAN’ ’STD’) ;
 var Z W ;
 class Y ;
 run;

 %tab2htm(capture=off,
 runmode=s,
 openmode=replace,
 htmlfref=_webout,
 brtitle=tabulated TEST dataset,
 center=Y);

%mend CHOICEB;

 /* -- */
 /* this prints out an error message */
 /* -- */
%macro OOPS;
 data _null_;
 file _webout;
 pick=symget(’CHOICE’);
 put ’Content-type: text/html’// ’Unknown choice:’/ pick;
 run;
%mend OOPS;

figure 10c, part 3 of clientXX.iffy.sas

/* --- */
/* iffy.sas - select logic based on a form */
/* --- */

%global CHOICE;

options mprint;

 /* ---------------------------- */
 /* make a test dataset */
 /* ---------------------------- */

data test;
do x=1 to 5;
 do y=1 to 3;
 z=x*y;
 w=round(1000*rannor(1213131),.1);
 output;
 end;
end;
run;

figure 10a, part 1 of clientXX.iffy.sas

 /* --- */
 /* first choice - dataset to HTML formatting tool */
 /* --- */
%macro CHOICEA;

 %ds2htm(data=test,
 runmode=s,
 openmode=replace,
 htmlfref=_webout,
 caption=this is the TEST dataset,
 ccolor=blue,
 tbbgcolr=cyan);

%mend CHOICEA;

figure 10b, part 2 of clientXX.iffy.sas

 /* code selection - macro PICKONE invokes */
 /* either the macro "CHOICEA" or "CHOICEB" */

%macro PICKONE;

%IF %upcase(%superq(CHOICE))=A %THEN %DO ;
 %CHOICEA;
%END;
%ELSE %IF %upcase(%superq(CHOICE))=B %THEN
%DO;
 %CHOICEB;
%END;
%ELSE %DO;
 %OOPS;
%END;

%MEND PICKONE;
%PICKONE;

figure 10d, part 4 of clientXX.iffy.sas

Hands-on WorkshopsHands-on Workshops

7

Debugging Tools
A special parameter, “_DEBUG” is interpreted by
Broker. The value of _DEBUG is the sum of a
number of powers of 2. If _DEBUG includes a “1”
in the sum, then Broker will echo all of the fields
sent from the client’s form. If it contains a “2”,
Broker will send back the time.

Suppose, for example, Broker receives
_DEBUG=3. Then it will echo all fields and send
back the time.

Figure 11b contains a form and an associated
JavaScript script which allows you to select
components of the _DEBUG field with radio
buttons. These buttons appear in pairs with the
same field name, e.g. df2. The browser will allow
only one button of each pair to be selected at a
time. If you turn a parameter “on” the off button is
deselected automatically.

Note that the form which sends parameters Broker
must have a “Name=f” clause, and an _DEBUG
field for this script to work. Figure 11a and 11b
together are an example HTML file using the
_DEBUG field. The associated SAS program
“W_debug.sas” is not shown.

<SCRIPT Language=”JavaScript”>
 // This function, together with the FORM which follows
 // sets the _DEBUG variable in the preceding form.
 // The form with _DEBUG must have a "name=f" parameter
 // in its "FORM" tag
function comp_debug(){
 with(document.dbf){
 newdb=0;
 if(_df1[1].checked) newdb=newdb+parseInt(_df1[1].value);
 if(_df2[1].checked) newdb=newdb+parseInt(_df2[1].value);
 if(_df4[1].checked) newdb=newdb+parseInt(_df4[1].value);
 if(_df8[1].checked) newdb=newdb+parseInt(_df8[1].value);
 if(_df16[1].checked) newdb=newdb+parseInt(_df16[1].value);
 if(_df128[1].checked)newdb=newdb+parseInt(_df128[1].value);
 if(_df256[1].checked)newdb=newdb+parseInt(_df256[1].value);
 if(_df512[1].checked)newdb=newdb+parseInt(_df512[1].value);
 document.f._DEBUG.value = newdb;
 }
} // ends comp_debug
</SCRIPT>

<FORM name=dbf>
<INPUT type=radio name=_df1 value=0 checked

onClick="comp_debug();">off
<INPUT type=radio name=_df1 value=1

onClick="comp_debug();">on - Echo all fields.

<INPUT type=radio name=_df2 value=0 checked
onClick="comp_debug();">off

<INPUT type=radio name=_df2 value=2
onClick="comp_debug();">on - Print elapsed time.

<INPUT type=radio name=_df4 value=0 checked
onClick="comp_debug();">off

<INPUT type=radio name=_df4 value=4
onClick="comp_debug();">on - List definition of all services, don’t run.

<INPUT type=radio name=_df8 value=0 checked
onClick="comp_debug();">off

<INPUT type=radio name=_df8 value=8
onClick="comp_debug();">on - Skip all execution processing.

<INPUT type=radio name=_df16 value=0 checked
onClick="comp_debug();">off

<INPUT type=radio name=_df16 value=16
onClick="comp_debug();">on - Display output in hexadecimal.

<INPUT type=radio name=_df128 value=0 checked
onClick="comp_debug();">off

<INPUT type=radio name=_df128 value=128
onClick="comp_debug();">on - Send back log file.

<INPUT type=radio name=_df256 value=0 checked
onClick="comp_debug();">off

<INPUT type=radio name=_df256 value=256
onClick="comp_debug();">on - Trace socket connection attempts.

<INPUT type=radio name=_df512 value=0 checked
onClick="comp_debug();">off

<INPUT type=radio name=_df512 value=512
onClick="comp_debug();">on - Show socket host and port number.

 </FORM>
 </BODY>
</HTML>

figure11b, part 2 of W_debug.htm

<HTML>
 <HEAD>
 <TITLE>Some help debugging</TITLE>
 </HEAD>
 <BODY>
 <FORM name=f action=’http://brokerpath/broker’>
 <INPUT type=hidden name=_SERVICE

value=wrkshp124>
 <INPUT type=hidden name=_PROGRAM

value=clientXX.W_debug.sas>

 <INPUT type=text name=XYZ> parameter "XYZ"
 <P>
 <INPUT type=submit

value="send it to a SAS program">
 <HR>
 <P>
 <INPUT type=text name=_DEBUG

value=0> parameter "_DEBUG"
 </FORM>

figure11a, part 1 of W_debug.htm

Hands-on WorkshopsHands-on Workshops

8

Errors You Might See
Figure 12a contains some error messages you might see
when debugging an Application Dispatcher application.
The condition under which you might see the error is
shown in boldface, and the error message Broker sends
back is shown below that.

In example 1 the Uniform Resource Locator (URL) listed in
the “action=” clause of the form tag had a typo in the
directory portion of the path to Broker. You might see
other messages if the typo is in the name of the server.

In example 2 the libname portion of the _PROGRAM field
was misspelled.

In example 3 the program name portion of the
_PROGRAM field was misspelled.

In example 4 the program type portion of the _PROGRAM
field was misspelled.

In example 5 the service in the _SERVICE field is
misspelled.

Example 6 happened when the SAS program failed to
write anything to “_webout”. This could have been due to a
missing “FILE” statement, or an incorrect parameter in the
“%out2html” macro.

Example 7 happened when Broker detected an incorrect
HTTP header. This could be due to a typo or the lack of a
null line at the end of the header.

In example 8 the “%out2html” macro contains an “htmlfile”
parameter. This causes the output to go to an actual file,
not the _webout fileref. The solution is to use the htmlfref
parameter.

The example in figure 12b is a little different. Here the
SAS program used the “&XYZ” construct in an assignment
statement. When the contents of field XYZ is as in the
second line of the figure, the put ’oops’ portion of the
macro variable value was executed as SAS code. This
illustrates the nature of the security problem using the
“&XYZ” type construct on unfiltered input. Dangerous
characters can be edited out with code like that in figure 7.

1 - Bad "Action=URL"
HTTP/1.0 403 Access Forbidden (Execute Access Denied –
This Virtual Directory does not allow objects to be executed.)

2 - Bad libname
Application Error
The library clientX is not allocated for the current service.
Check the spelling of the library name. If it is spelled correctly
contact the server administrator and notify him/her of the
problem.

3 - Bad program name
Application Error
The program clientXX.field.sas does not exist.

4 - Bad Program type
Application Error
The program type 1FIELD is invalid.

5 - Bad Service
Error in HTML form
The service "wax_oy" is not listed in the configuration file.

6 - No output to _webout
Error reading SAS output
The SAS program did not produce any output. This could
happen if one of the early steps failed. Set _DEBUG=131
and resubmit in order to see the SAS Log file, or set
_DEBUG=16 to see a hex dump of the output.

7 - bad HTTP header
Invalid HTTP header
The SAS program did not produce a valid HTTP header. It
must at least have a line like:
 Content-type: text/html
followed by a blank line to define the output MIME type.
"Location:" is also allowed. Set _DEBUG=131 and resubmit
in order to see the SAS Log file, or set _DEBUG=18 to see a
hex dump of the output.

8 - %out2htm(htmlfile=_webout,
 capture=off,
 window=log,
 runmode=s,
 openmode=replace); (you should use htmlfref)
Error reading SAS output
The SAS program did not produce any output. This could
happen if one of the early steps failed. Set _DEBUG=131
and resubmit in order to see the SAS Log file, or set
_DEBUG=16 to see a hex dump of the output.

Figure 12a, error messages you might see

Try this value of XYZ with w_debug.sas
test3";put ’oops’;put"

NOTE: Capture of log output started.
oops
Field XYZ contained:
test3

Figure 12b, insecurity with “&XYZ”

Hands-on WorkshopsHands-on Workshops

9

Resources and References
The best source for information on using
SAS/IntrNet is the SAS Institute World Wide Web
site. Click n the Web Enablement link on their home
page. The home page is:

SAS Institute Inc., SAS Home Page.
http://www.sas.com.

Other references:

The National Center for Supercomputing
Applications NCSA Beginner’s Guide to HTML
http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html

Michael Grobe
HTML quick reference
http://www.cc.ukans.edu/~acs/docs/other/HTML_quick.shtml
Academic Computing Services
The University of Kansas

Michael Grobe
An instantaneous introduction to CGI scripts
and HTML forms
http://www.cc.ukans.edu/~acs/docs/other/forms-
intro.shtml
Academic Computing Services
The University of Kansas

SAS/IntrNet is a registered trademark or trademark
of SAS Institute Inc. in the USA and other countries.
 Indicates USA registration.

Mickey Waxman mickey@ukans.edu
Larry Hoyle lhoyle@ukans.edu

Hands-on WorkshopsHands-on Workshops

	Main TOC

