
SAS webAF for Java Application Development, a First Sip
Mickey Waxman University of Kansas, Lawrence, Kansas

Larry Hoyle University of Kansas, Lawrence, Kansas

ABSTRACT
SAS webAF is an integrated development environment for Java
programs and applets. In addition to the standard components, it
provides pre-built components that allow Java programs to
access SAS data and procedures on a server from a thin client
without the SAS system.

This hands-on workshop will serve as a first look at SAS webAF,
demonstrating what it is and how it works. Participants will create
a SAS-enhanced Java applet in a series of drag and drop
exercises.

No previous knowledge of Java is required for this workshop.

INTRODUCTION
In this workshop we will recreate the application shown below. It
can be used in a Web page or run as a standalone program. This
Java program connects to a SAS server across the network and
submits a regression procedure. It also retrieves a dataset with
the predicted and residual values from the regression and
displays them in a table and a graph.

The application will be recreated using Java components
(JavaBeans) which are supplied as part of the webAF package.
Each of the visual elements in the figure below is such a
component, placed in the project using the drag and drop
capability of the webAF development environment.
The scatter plot, for example, is a component written by SAS
Institute. It was dropped into the project and then connected to
the rest of the project by setting its "datasetInterface" property.
Once configured with this property, it was able to retrieve and
display data.
Components are customized when designing an application by
setting values for their properties (variables). The components
are stored as a part of the application with those values retained.
For instance, if the color of the submit button is set to blue while
the application is being built, it stays blue until something else
changes it.
Components also have methods (like subroutines - pieces of
code), and can originate events (e.g. A button is clicked). The
webAF development environment has tools for helping set up
event handlers. In the example below, Clicking the refresh button
fires the "actionPerformed" event, whose handler calls the tree
view’s "refresh" method.

THE WEBAF DEVELOPMENT ENVIRONMENT
The webAF development environment contains a number of
collections of tools organized into toolbars and subwindows. This
workshop will use just a few of those facilities, the Active Frame
Window, the Component Palette, the Project Navigator, and the
Output Window.

THE ACTIVE FRAME WINDOW

The subwindow on the right in the figure below is the Active
Frame Window. It contains the view of the application’s visual
components. Non visual components are also added to the
application by dropping them on this window. A right click on the
components in this window allows selection of documentation
about the component or setting object properties or event
handlers. Tabs at the base of the Active Frame Window allow the
programmer to switch between the application’ source code and
its run-time appearance.

THE COMPONENT PALETTE

The tabbed bar just below the main menu bar in the window
below contains the components bundled with webAF. These

include many components based on Java’s Abstract Windowing
Toolkit (AWT), such as buttons, text boxes and the like. It also
contains components designed to communicate across the
network with SAS running on a server, as well as components
which facilitate using SAS objects - datasets, libraries, catalogs,
MDDBs, formats, procedures and so on. There are also graphical
components - an image viewer and a chart component.

THE PROJECT NAVIGATOR

The subwindow on the left, the Project Navigator, contains an
outline for tutorials and extensive help, as well as views of lists of
the components, component properties, files, and classes in the
project (application). Right clicking on the components and
properties allows the user to set property values, design event
handlers, and link the values of properties belonging to two
different components. A link sets up the application so that when
one property is assigned a new value, the other property is
automatically assigned that value.

THE OUTPUT WINDOW

The bottom subwindow receives output from compiling and
testing the application. Error messages, elapsed times, status
messages and more appear here.

Active Frame Window
Component PaletteProject Navigator Output Window

GETTING STARTED

Double click the webAF icon.

Go to File -- New -- Project and let’s call this project Regress.

Click Finish.

Click View -- Output to close the Output Window.

You may wish to resize the component (the Frame) in the Active
Frame Window to fill the window.

PUTTING COMPONENTS INTO YOUR JAVA APPLET OR APPLICATION

SETTING UP TABBED FOLDERS - A MINI SAS DISPLAY MANAGER

Click on the Container tab.

Find the TabbedView container on the Component Palette. Drag
to the Frame's upper left corner.

Go to the Project Navigator window (left window), right click on
tabbedView1 --- Rename.

Enter tabbedViewSubmit as the new name.

Right click on tabbedViewSubmit --- Customizer.

Click on <Add new Item> to highlight, enter Output as the new
name and click Add.

Click on Tab1 to highlight, type Program and click Rename button.

Click on Tab2 to highlight, type Log and click the Rename button.

Close the Customizer window.

In the Navigator window:

Right Click on tabFolder1 --- Rename, enter tabFolderProg as
the new name.

Right Click on tabFolder2 --- Rename, enter tabFolderLog.

Right Click on tabFolder3 --- Rename, enter tabFolderOut.

Right click on tabFolderProg --- Customizer. Click the
Appearance tab.

Click on the Color Background ellipsis button (“…” on the right),
select cyan and close the window.

Right click on tabFolderLog --- Customizer, click the Appearance
tab.

Click on the ellipsis button (“…” on the right), select yellow and
close the window.

In the frame, click on the Program tab (to select). The tabbed
folder should be cyan, if not, click the Program tab again.

Click on the Text tab in the Component Palette.

Find the textArea component, drag and drop it onto
tabFolderProg (on top of the cyan folder in the Frame).

In the Frame stretch the new textArea component to fill the entire
area below the tabs in the container.

In the Navigator window right click on textArea1 --- Rename, enter
textAreaProg.

Click on the Log tab in the frame (to select). The tabbed folder
should be yellow.

Click on the text tab in the Component Palette, drag and drop a
textArea component onto tabFolderLog (on top of the yellow folder
in the Frame).

In the Frame stretch the new textArea to fill the container.

Rename textArea2 to textAreaLog.

Click on the Output tab in the Frame.

Click on text tab in the Component Palette.

Drag and drop textArea component onto tabFolderOut.

In the Frame resize the textArea as before.

Rename textArea3 to textAreaOut.

Right click on textAreaLog --- Customizer, Select the Appearance
tab.

Click on the Font ellipsis (“…”) button (far right edge of dialog
box), change the font to 9 point.

Close the Customizer window.

Repeat this step for both textAreaOut and textAreaProg.

Right click on textAreaProg --- Customizer, click on the TextArea
tab.

 Enter this text in the CurrentValue window:

proc reg data=SASUSER.FITNESS;

 model MAXPULSE = AGE WEIGHT RUNTIME;

 output out=WORK.AWR

 P=Pr R=Res;

run;

quit;

Close the Customizer window.

SAS programs
entered in this
textArea will be
submitted to run on
the remote server.

The log from the submitted SAS program will appear
in the Log tab.

The output from the submitted SAS program will
appear in the Output tab.

Click on the Selector tab in the Component Palette.

Drag a button (far left on Component Palette) to the Frame and
center below the tabbedView component.

In the Navigator window, right click on Button1 --- Rename it
buttonSubmit.

Right click buttonSubmit --- Customizer.

In the Text window, change “button” to "Submit".

Click (select) the set button size based on text.

Close the Customizer window.

Click on the SAS tab in the Component Palette

Drag a SubmitInterface (far left on Component Palette) and drop
onto the Frame but not on top of any component. A new dialog
pops up, create new connection should be selected.

Click OK.

Right click on Connection1. -- Customizer. Set the host name to
the address of your server. Click (select) Prompt for username
and password at runtime.

CONNECTING THE COMPONENTS

In the Project Navigator, click on the + to the left of
submitInterface1 to expand it.

Right click on logText --- link --- Send value to.

Click on textAreaLog --- text, click the Add Link button (on the
right).

Close this dialog box.

Repeat the above three steps to link outputText to textAreaOut
(in Navigator under submitInterface1).

In the Frame, right click on the Submit button, click on handle
event.

The first selection should read "Call a method on a component".

Click on "the event occurs on buttonSubmit".

In the Select the Event section (right section) click on
actionPerformed.

Click OK.

Click on "Call a Method on a Component" (New Event Handler
Window- shown on previous page).

In the Which method should react to the event? section, click on
SubmitInterface1.

In the How should it React? section, click on setProgramText
using expression.

Click the Expression button (far right).

In the Select Component section (in the Expression dialog box),
scroll down to click on textAreaProg.

In the Select Expression section, select getText.

Click OK in the Expression dialog box.

Click OK in the Select a component and a Reaction box.

Click OK in the Event Handler box.

SAVE YOUR WORK
Go to File --- Save Project.

TESTING
Click on View --- Output.

Click on Build --- Compile File.

If you see "operation complete" in the webAF Output Window and
no error messages, then try Build --- Execute.

You should now have a working web application running in
the AppletViewer window:

Select the Output tab and then the Log tabs.

You will see an empty output window and a copyright notice in the
log window.

Click the Submit button. You will see the log from the regression in
the Log window.

Select the Program window and delete the "RUNTIME" variable
and change WORK.AWR to WORK.AW by deleting the final R.
Press submit again and see the results of the second regression in
the log and output windows.

Close the AppletViewer window.

JAZZING IT UP - COUNT THE NUMBER OF SUBMITS
Click on the Data Types tab in the Component Palette and drag a
LongData object into the Frame (not on top of anything).

In the Project Navigator, rename longData1 to
longDataSubmitCount.

From the Text tab in the Component Palette, drag a TextField to
the right of the Submit button. Rename textField1 to
textFieldSubmitCount (in the Project Navigator).

The event handler for the
Submit button sets the
programText attribute of
the SubmitInterface. The
SubmitInterface sends the
SAS code through the
connection object to run
on the server(RSUBMIT).
The server runs the SAS
program and sends back
the log and output.

In the Navigator window, right click longDataSubmitCount --
Properties. Move the mouse over the word "text" (the text property
of the object) and click the ellipsis button (…) that appears on the
left.

In the This property sends its value to section (lower section)
click on Add link .

Select textFieldSubmitCount --- text , click Add Link button.

Close the Link Send Value To box. Close the Display Links box.
Close the Property Sheet.

HERE WE ACTUALLY WRITE A LINE OF JAVA CODE

Right click on the Submit button and select handle event .

Select write your own code in the top box.

In the Interaction Description section, click on the event occurs on
buttonSubmit.

In the Select the Event section, select actionPerformed and click
OK.

Click on the Source button. Here we will type in a Java statement.

Place the cursor at the end of the comment line:

 // NOTE: Add new code here

and hit <Enter> key

 (scroll to find, if necessary. It will follow

 public void buttonSubmitActionPerformedHandler1)

Type in the following:

longDataSubmitCount.setLongData(longDataSubmitCount.getLongData() + 1);

NOTE that the numeric value of
longDataSubmitCount is in a property
called longData.

Your application now counts the number of submits.

Try Build --- Execute.

In the AppletViewer window, click the Submit button. Click it
again and notice that the submit count increments.

Close the AppletViewer window.

JAZZING IT UP - TABLES AND GRAPHS

Click the Visuals tab under the Frame.

From the Selector tab in the Component Palette drag a TreeView
component to below the submit button.
Rename it treeViewSASLibs (hint: go to Navigator window to do
this).

From the Data Viewers tab in the Component Palette drag a
TableView component to the right of the tabbedView. Rename it
from tableView1 to tableViewFromTree.

From the Graphic tab (Component Palette) drag a Scatter
component to below the tableView. Rename it from scatter1 to
scatterFromTree.

From the SAS tab in the Component Palette drag a
DataSetInterface component to an empty spot in the Frame.
Rename it from dataSetInterface1 to dataSetInterfaceShared.

Again from the SAS tab, drag a LibraryListInterface component
to an empty spot in the Frame. Rename it from
LibraryListInterface1 to libraryListInterfaceSASLibs.

From the Selector tab (Component Palette), drag a button to
below the treeView in the Frame. Rename it from button2 to
buttonTreeRefresh. Use the Customizer to change its text to
Refresh.

Expand the outline for tableViewFromTree (Hints: Navigator, +)
and right click on the modelInterface property. Select Set Value
and set to regress.datasetInterfaceShared.

Repeat the instructions in the preceding paragraph for
ScatterFromTree.

Expand the outline for treeViewSASLibs and right click on the
selectedItem property. Select Link -- Send Value, select
dataSetInterfaceShared and Dataset. Click Add Link. Close the
Link - Send Value To dialog box.

Right click on the modelInterface property of treeViewSASLibs.
Select Set Value. Scroll to libraryListInterfaceSASLibs and click
OK on the Property dialog box.

Right click on the Refresh button, select Handle Event.
In the Interaction Description section (bottom), Click on the event
occurs on buttonTreeRefresh.
Click action Performed and click OK.
Click Call a method on a Component.
Select treeViewSASLibs. Select Call refresh
Click on OK. Click OK on the Event Handler dialog box.

FINAL TESTING
The application is now complete. Click Build -- Execute.

In the AppletViewer window, click the submit button.

Expand the outline in the tree view by clicking on the ’+’’ to the left
of The SAS SYSTEM and to the left of WORK.

Click on WORK.AWR, the output dataset from the regression.

The table and graph become populated with data once the dataset
is selected. Rerun the regression with different variables and a new
output dataset. Click on the tree view’s refresh button to make that
dataset appear in the outline too. Choose it and see the table and
graph change.

You might want to right click on the scatter plot and experiment
with changing its properties at run-time.

CONCLUSION
An important feature of webAF which hasn’t been shown here is
it’s ability to create Java components which, running on the client,
mirror SAS/AF components running on the server. This is
accomplished with the Remote Object Class Factory (ROCF).

ROCF creates the Java component which can call methods on
SAS/AF objects (written in SCL) running on the server. These
SAS/AF objects can then call other SAS/AF objects or run other
SAS programs. This architecture will be important to those with
existing SAS/AF applications.

CAVEATS
This workshop’s application was developed without the need to
write any Java code. Many real applications will require writing
Java code to supplement the SAS supplied components.

The application you have just created also accepts any SAS code
the end user cares to submit to the server. This, of course, is not
usually desirable.

The application shown in this paper was developed using the
Release Candidate 1 version of webAF. Some graphical elements
may change in the final release version.

TRADEMARKS
SAS/AF is a registered trademark or trademark of SAS Institute
Inc. in the USA and other countries. indicates USA registration.

webAF is a registered trademark or trademark of SAS Institute
Inc. in the USA and other countries. indicates USA registration.

Java is a registered trademark or trademark of Sun Microsystems
Inc. in the USA and other countries. indicates USA registration.

JavaBeans is a registered trademark or trademark of Sun
Microsystems Inc. in the USA and other countries. indicates
USA registration.

ACKNOWLEDGEMENTS
We wish to thank Emma Hoyle, age 9, who tested the accuracy
and ease of use of the written instructions for this workshop. She
successfully completed the project in about one hour.

CONTACT INFORMATION
Mickey Waxman mickey@ukans.edu
Larry Hoyle lhoyle@ukans.edu

A copy of this paper and the sample project will be
available at:
www.ukans.edu/cwis/units/IPPBR/ksdata/sugi/sugi24/WaxmanHoyle24.htm

