
DRAFT Using XMLMAP to Read Data Documented by a Data
Documentation Initiative (DDI) File DRAFT

Larry Hoyle Policy Research Institute, The University of Kansas

Abstract
Data Documentation Initiative files are XML “codebooks” for social science data. SAS XMLMAP provides the
capability to read these metadata into a collection of SAS datasets. SAS code can then be produced to read the data
documented by the DDI file. This paper also describes how the XML Atlas tool was useful in developing the
XMLMAP for this project.

What is DDI?
The front page for the Data Documentation Initiative (DDI), http://www.icpsr.umich.edu/DDI/, describes DDI as
“an international effort to establish a standard for technical documentation describing social science data”. DDI
provides a means to structure metadata as an XML document.
The DDI XML format is defined by a Document Type Definition (DTD) available at
http://www.icpsr.umich.edu/DDI/users/dtd/Version2-0.dtd.zip. The top level of this metadata file is defined as

<!ELEMENT codeBook (docDscr*
 , stdyDscr+
 , fileDscr*
 , dataDscr*
 , otherMat*) >

The elements of the DDI file within the root element “codebook” describe:
• docDscr - the DDI document itself

o can include a citation, status, source, notes and more
• stdyDsc - the dataset (the study) described by the DDI file

o can include a citation, study information, method, terms of use and more
• fileDscr - the data file

o can include a URI for locating the file; information about content, structure, format, number of
records, record length and more.

• dataDscr - the variables within the data file
o can include information about variable groups, ncube groups as well as information about

variables – name, weight, question, location(start position, end position, width, record segment)
and more

• otherMat - other material
o could include questionnaires, SAS code to read the data, maps etc.

 A Sample DDI file
This paper will use the codebook for ICPSR study 6084 – “CBS News Monthly Poll #2, August 1992” as the
example DDI file to be read. The DDI file is available at: http://www.icpsr.umich.edu/DDI/samples/index.html. The
first few lines of the XML DDI file are:

<?xml version="1.0"?>
<?xml-stylesheet href="../XSL/codebook.xsl" type="text/xsl"?>
<?cocoon-process type="xslt"?>
<!--DOCTYPE codeBook SYSTEM "http://www.icpsr.umich.edu/DDI/codebook/samples/Version1.dtd"-->
<codeBook>
 <docDscr source="archive">
 <citation>
 <titlStmt>
 <titl>CBS News Monthly Poll #2, August 1992</titl>
 <altTitl>August National Poll II, Republican National
 Convention</altTitl>
 <IDNo agency="ICPSR">6084</IDNo>
 </titlStmt>

<!-- 2003-05-18T12:31:09.041 -->
<!-- SAS XML Libname Engine Map -->
<!-- Generated by XMLAtlas, Version 9.0.1 -->

<SXLEMAP version="1.1" name="SXLEMAP">
<TABLE name="fileInfo">
 <TABLE-PATH>/codeBook/fileDscr/fileTxt</TABLE-PATH>

 <COLUMN name="fileName">
 <PATH>/codeBook/fileDscr/fileTxt/fileName</PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>42</LENGTH>
 </COLUMN>

 <COLUMN name="caseQnty">
 <PATH>/codeBook/fileDscr/fileTxt/dimensns/caseQnty</PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>5</LENGTH>
 </COLUMN>

 </TABLE>

</SXLEMAP>

These lines reveal the hierarchical nature of the file. The “root” of the file is a <codebook> tag, under which lies
the <docDscr source="archive"> tag, and within that the <citation> tag. More tags are, in turn, nested within the
citation. Removing the <?xml-stylesheet tag in line two and opening up the file in MS Internet Explorer 6 displays
the XML file as an outline. Here is a view of that file with some of the elements collapsed:

What is SAS XMLMap?
In order to retrieve data from a hierarchical XML file into SAS datasets there has to be a way to specify a
“mapping” between the hierarchy and a rectangular table. The SAS XMLMap file is that mapping.
The SAS XMLMap file is an XML file that describes which elements of an XML target file define rows and which
elements define columns. In the example below a SAS dataset named fileInfo is created with one row for each
fileTxt element that is nested in a fileDscr element. The dataset has two columns, one taken from the fileName
element and one from the caseQnty element.

The following SAS program prints the dataset described by the SAS XMLMap file above.

The resulting output is:

Obs fileName caseQnty

1 DS1: CBS News Monthly Poll #2, August 1992 1,546

Viewing the sample DDI file in XML Atlas
SAS XML Atlas in SAS 9 is a graphical user interface for creating SAS XMLMap files. It allows drag and drop
creation of the XMLMap file and automatically creates the SAS file to reference it. Using Atlas was an easy way to
create the XMLMap file to read the DDI file. Here is an Atlas view of the files we’ve been working with so far.
XML elements can be dragged from the upper left pane to the upper right pane, creating the design of the tables to
be extracted. The bottom center pane shows the XMLMap file that Atlas generates and the bottom left pane shows
sample SAS code that will access that XMLMap file.

/* read a two column table from DDI file for ICPSR 6084 */
filename noStyles 'D:\projects\sugs\sugi29\xmlCodebooks\06084noStylesheet.xml';
filename SXLEMAP 'D:\projects\sugs\sugi29\sascode\fileInfo.map';
libname noStyles xml xmlmap=SXLEMAP access=READONLY;

proc print data=nostyles.fileInfo;
run;

/* SAS program to read ICPSR 6084
CBS News Monthly Poll #2, August 1992
August National Poll II, Republican National Convention

File Name:
 DS1: CBS News Monthly Poll #2, August 1992
Number of Cases:
 1,546
Number of Variables:
 70
Logical Record Length
 80
Records Per Case:
 3

Extracting SAS datasets from the hierarchical DDI file
Only a small subset of the elements in the DDI file are actually needed to write a SAS program to read the data file,
but it is useful to read additional elements to document the code. For this example, Eight SAS datasets were created,
with the following elements in each.

SAS Dataset Column Name (XML DDI element name)

ABSTRACT abstract, source
DATADSCRVAR name, StartPos, EndPos, width, RecSegNo, labl, lablLevel, formatType,

ID, qstnLit, refs, min, max, universe, notes, txt, txtLevel
DATADSCRVARCATGRY TxtLevel, name, catValu, labl, lablLevel, linkRefs, txt, missing, missType
DATADSCRVARINVALRNG VALUE, name, ID
FILETXT fileName, caseQnty, varQnty, logRecL, recPrCas, recNumTot, fileType,

format, dataMsng
METHOD timeMeth, dataCollector, frequenc, sampProc, collMode, resInstru, weight
SUMDSCR StartDate, EndDate, nation, anlyUnit, universe, dataKind
TITLSTMT titl, altTitl, IDNo, agency

A SAS datastep writes a SAS datastep
These datasets contain the information necessary to write a SAS program to read the data file documented by the
DDI file. The SAS program to be output consists of a large comment at the beginning, containing metadata not
needed for the mechanics of reading the file. Here is the beginning of that comment:

The content of these elements needs to be edited to ensure that there won’t be a “*/” printed in the middle of the
comment. The DDI file for ICPSR 6084 also contained many tab characters.
The SAS macro used to edit the elements was:

%macro putInCmnt(v=name, ve=vEdited, h=heading);
 &ve=compbl(tranwrd(translate(&v,' ','09'x),'*/','*_/'));
 if &ve ne ' ' then put / "&h" / ' ' &ve;
%mend putInCmnt;

The code to print the part of the beginning comment shown above was:
set nostyles.titlstmt;
 titl= compbl(tranwrd(translate(titl,' ','09'x),'*/','*_/'));
 titl= compbl(tranwrd(translate(titl,' ','09'x),'*/','*_/'));
 put '/* SAS program to read ' agency ' ' IDNo ;
 titl= compbl(tranwrd(translate(titl,' ','09'x),'*/','*_/'));

 put titl;
 altTitl=compbl(tranwrd(translate(altTitl,' ','09'x),'*/','*_/'));
 put altTitl;
 put //;
 set Nostyles.Filetxt;
 %putInCmnt(v=fileName, ve=vEdited, h=File Name:);
 %putInCmnt(v=caseQnty, ve=vEdited, h=Number of Cases:);
 %putInCmnt(v=varQnty, ve=vEdited, h=Number of Variables:);
 %putInCmnt(v=logRecl, ve=vEdited, h=Logical Record Length);
 %putInCmnt(v=recPrCas, ve=vEdited, h=Records Per Case:);

Since SAS format names are still restricted in length, the expedient thing to do was to construct format names like
“V00015f” and then place a comment with the corresponding variable name. SAS missing values must also be
assigned labels. The DDI elements catValu and labl were used to write value statements for a PROC FORMAT as
in this example.

In the example above the value “9” represents missing and will be replaced with the SAS missing value “.B” in the
datastep.

Writing the DATA step to read the file described by the DDI file involves several SAS “DATA ._null_;” steps. One,
shown below, writes the input statement, using the FILETXT, TITLSTMT, and a revised DATADSCRVAR
datasets. Another writes a sequence of IF statements to substitute SAS unique missing values for the original
missing values. Another writes variable label statements. A final “DATA _null_” statement assigns formats to
variables.

proc format;
value V00015f /* format for variable Q1 */
1 ='Yes'
2 ='No'
.B ='DK/NA'
9 ='DK/NA'

data _null_;
 /* begin writing datastep to read the variables */
 set DATADSCRVAR end=last;
 file reader lrecl=1024 mod;
 length ftype $ 3;
 if _n_=1 then do;
 set Nostyles.Filetxt;
 set Nostyles.titlstmt;
 put ///;
 /* remove unsafe characters */
 agency=translate(agency,'_______','''";/*&%');
 IDNo=translate(IDNo,'_______','''";/*&%');
 logrecl=translate(logrecl,'_______','''";/*&%');
 RecSegNo=translate(RecSegNo,'_______','''";/*&%');
 ftype=translate(ftype,'_______','''";/*&%');
 StartPos=translate(StartPos,'_______','''";/*&%');
 EndPos=translate(EndPos,'_______','''";/*&%');

 put 'data ' agency +(-1) IDNo ';';
 put "infile '&targetPath' LRECL=" logrecl " PAD;";
 put "input ";
 end;
 /* position of each variable */
 if RecSegNo ne ' ' and StartPos ne ' ' and EndPos ne ' ' then do;
 if upcase(formatType) = 'NUMERIC' then ftype = ' ';
 else ftype = ' $ ';
 put "#" RecSegNo safename ftype StartPos +(-1) "-" EndPos ;
 end;

 if last then do;
 put ";";
 end;
run;

/* SAS program to read ICPSR 6084
CBS News Monthly Poll #2, August 1992
August National Poll II, Republican National Convention
File Name:
 DS1: CBS News Monthly Poll #2, August 1992
Number of Cases:
 1,546
Number of Variables:
 70
Logical Record Length
 80
Records Per Case:
 3
*/
proc format;
value V00015f /* format for variable Q1 */
1 ='Yes'
2 ='No'
.B ='DK/NA'
9 ='DK/NA'
;
value V00067f /* format for variable Q33a */
1 ='Under'
2 ='Over'
2 ='Won''t specify/Refused'
.I ='Won''t specify/Refused'
;
data ICPSR6084 ;
infile 'D:\data\icpsr\data\6084\da06084.txt' LRECL=80 PAD;
input
#1 cardno 1-1
#1 respno 2-6
#1 Q1 30-30
#2 cardno 1-1
#2 respno 2-6
#2 Q37 57-64
#3 cardno 1-1
#3 respno 2-6
#3 weight $ 49-54;
/* replace missing data with unique SAS missing values */
 if Q1 = 9 then Q1 = .B ;
 label Q1 ='Some people are registered to vote and others are not. Are you registered to vote in the precinct or election district where you live, or
aren''t you? ';
/* This section will associate formats with each variable that has labeled categories */
/* you may want to comment it out. */
 format Q1 V00015f.;
run;

Here is an abbreviated copy of the SAS program written by the DDI processing SAS program.

Hand Debugging (“Out out damn spot”?)

Unfortunately, having structured metadata doesn’t always mean completely automated data input. In the case of our
example ICPSR 6084 file, the SAS program written from the DDI file won’t run without some hand debugging. In
this case there are some variables (like Q33a) with values that have two different labels assigned. The format
definition fails and then the datastep fails when trying to assign that format to a variable. Fortunately this is an easy
error to fix – a lot easier than writing the whole SAS program from a printed codebook.

The SAS program to read the DDI file and write a SAS program as well as the resultant SAS program will be
available on the Web at …..

1684 value V00067f /* format for variable Q33a */
1685 1 ='Under'
1686 2 ='Over'
1687 2 ='Won''t specify/Refused'
ERROR: This range is repeated, or values overlap: 2-2.
1688 .I ='Won''t specify/Refused'
1689 ;

