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ABSTRACT

In this paper, we investigale the problem, whether or not
incomplete observations contain any informaltion about the
parameteres that could be used in their estimation, as it applies
Lo limited dependent variable models. The answers differ between
binary response models and Tobit models when serial correiation
prevalls given missing observations on independent variabies,

I, instead, missing observations perlain to the dependent

variable, we have negative answers for bolh mocde | s .
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In a recent article, Kmenta and Balestra (1986) consider the
problem of estimaling the coefficients of a linear regression
model with missing measurements when no auxiliary relations can
be justified and when the omission of incomplete observatlions
leaves the sample selection rule unaffected. They show that the
incomplete observations contain no information about the
redression parameters that could be used in their estimation. A
remaining question of interest is whether or not their conclusgicn
could be generalized Lo nonlinear econometric models. Here, we
investigate the problem as it appliés to binary response (BR)
models and Tobit models.,

For BR models, our results show that the answer is positive
when we have missing observations on independent variables, but
nol in the case of missing observations on Lhe dependent
variable. More specifically, in the latter case, the only
posilive result appears when Lhe missing values are estimated by
their respective expected values using the estimated parameters
derived from the complete observations. The procedure, allhougn
directly applicable to linear models, ignores the dichotonomous
property of the underlying variable. For Tobil models, the
result is different. First, if missing observations pertain to
independenl variables, Kmenla-Balestra's conclusion sustains in
the absence of serial correlation assuming the variance-

covariance matrix is known. A simple example with serial



correlation is provided Lo invalidate ihe above result. In the
case of missing observations on the dependent variable, there
exist no reasonable estimates for the missing values that could
retain Kmenta-Balestra's conclusion.

To present our results, we begin with the following BR model:

¥ g 1, 4.0 xtﬁ + £, 02 0; 0, otherwise, ¥ b= Ly wmewy "By (1)
where the random vector ¢ = (el,...,eT)’ has a joint density
funcltion h(.). We now decompose the observation matrix as

fol lows: Y = [¥," ¥."1%,, X = [X,° Xz']', where Y is a (T x 1)
column vector, N is a (T x k) matrix,; Yj is a (Ti X 1) column
veciLor, Xi is a (Ti x k) matrix, ¥ i =z 1, 2 such that Tl + T2 =
T. Consider Lhe case Lhat X2 1s ungbservable while Xl, Yl and YZ
are all known. Lel é be the maximum likelihood (ML) estimator
using only complete observations (Yl, Xl). To see whether or not
contains any information about g, we adopt Kmenta-Balesira's
approach. Specifiecally, we Lreat X2 as unknown parameters to be
estimated along with ¢ in the framework of maximum likelihood

eslimation such that g is the new ML estimator. The problem may

be wrilten as:

—.\r_,‘? @
max J TIL J hie) de_ ... de_. (2)
8.x, - ; |

Since h(.) is nonnegative, the likelihood increases as the

integration region increases. To achieve the maximum, we choose
xrﬁ = -» if —xrB is the upper limit of the integration (i.e.,
yr = 0), ¥ r = T1 + Liwsm; D8 xgﬁ = » 1f - xs£ is the lower



limit (i.e.; Yg = 1), ¥ s = Tl +1,...,T. As a consequence,

equaticn (2) reduces to the maximum likelihood estimation problem
associated with complete observations, which implies £ = §; and
hence XZ contains no information about £ that could be used in

Lhe estimation procedures for the most general BR models.

We now turn to the Tobit models:

Yp ¥ Ny % £y if Nev ot £ 2 0 ; 0, otLtherwise, ¥ t=1s a3 65T {31
where {et} is a sequence of i.i.d. normal random variazbles with
E(et) = G var{et) = 62. Since 52 is assumed to be known, the
distribution [resp. density] function of €4 is denoted by G{.)
fresp. g(.)]. Without implicating any confusion, let

T1 = {t:l <L Tl}, T2 z {L:T1+1 ¢t < T}, and define

R={t: 1 <L <T, vy >0}, 8= (t:"1<t¢T, Y = 0}. Upon

maximizing the log-likelihovod funeclion associated with complete

observations, the ML estimator Y satisfies

~ =] A , -0 ~

- Z” [u(-xtw ) ] g(—xt1)xt + g by (yt - X )xt = 0.
SnIl RnT1

On the other hand, if we treat Xz as unknown parameters, the

corresponding maximum likelihood estimation problem is

Max z log(G(-x
s X

2T L logg(yt—x P

oz
2 te8 LeR E

The first order condition associated with X2 leads to the

following property:

(G(-% 7 Y-8, % % 3 D when Y =0, ¥t = T +1,...,T ; (da)

i 1



Yy = Xt when ¥ > 0, ¥ t = T1+1....,T, (4b)

where (x Y ) is the optimal solution. (Note that (4da) implies

t 1

-l
-2
1

-« when Ty = 0). Upon substituting (4a)-(4b) into the
other first order condition associated with ¢, we Lhen esiablish
= ; § Following similar approach, the result is maintained in
the presence of heteroscedasticity provided that all the variance
Lerms are known. Thus, in Lihe context of Tobit models with the
underlying normal disturbances being independent, incomplete
observations due to missing values on independent variables

contain no information about the parameters.

In case Lhat serial correlation prevails, the above result
1

becomes invalid. For example, assume that h is a standard
normal variable such that E(epeq) = p 3 0, g < Tl < p while all
Lthe other covariances are zero. The corresponding log-likelihoad

function is

L= I log (#(—xtq)) + I log(¢(yt - Xer))
teS’ teR’

+ l.og[J U h(y - X7 eq)deq]

where S’ = 8 - {(p,q}, R*- = R - {p,yql; 4(.) [resp.¢(.)] is the
cumulative [resp. probability] density function of the standard
normal variable; h(.,.) is the bivariate normal density function

for (ep, eq). Upon maximizing L, the first order condition



associated with xp implies

if v 18 nontrivial (i.e., 5 § 0)a Further, upon substitution

equation (3) into the other first order condition associated with

ty, we establishb that v = 4 if and only if
.—xqr
by - X ¥y =X 1) (=x %) = dl-x 7) hiy -x 7, ¢ )d= (6)
P ( q7 q" @t q" p!

whenever equation (53) holds. After algebraic manipulalion, the

Lwo equations reauce to

Bzd((a - pz)/8) + pt(la-pz)/6) = 0 (57

dlald(la - pgz)/8) = #{(a-gz)/9)t(a) /e, (67)
espectively where & = (1 - g2 14 8 2 = ¥y - X y & = =X 3
respect 3 1ere = s ' = Yo .p‘}, = ..(iy.
Soulving the above two equations, we have z = -nopla)/d(a).
Therefore, v = 1 if and only if

@Wla,p) = ¢la)t((ad(a) + pd¢(a))/8¢(a))

- #lalp((ai{a) + pd¢(a)J/6¢(a)J/6

is identically zero. It can be shown that @(a, p) = 0 when g =
Q. Nonetheless, when g t 0, Q(a, #) 1is not zero everywhere;
hence in general 4 % T .

The above results are derived under the assumption that the

variance-covariance matrix is known. Now, suppouse instead that

-



the matrix is unknown, then the parameters of concern may not be

identified. For example, in probit models with Tl ods

disturbance terms such that var{et) = 02, ¥ t, only (8/5) can be
. ‘ P —~
identified. However, we can show that (B/a) = (B/5); hence X

2

contains no information about the identified parameters. Similar

7

resull dues not carryvover to Tobit models where both v and s° are
; proe | . X . .
tdentifiable, The main reason is tLhat! Lhe log-likelihood

luniction depends upon the number of observations of the dependent

variable that take their values at zero. As a result, £ = §

only when ¥ oy ¥ of = T1+I,....T.

Finally, assume that xi, X, and Y. are observable but YZ s
L

1

~

HoE ; The approach is then finding predictions T2 based con Xl, N4
&

h}

and 'y and apply ML estimation to the augmented samples
thereafter. For BR models with i.i.d. disturbance terms,
maximizing the log-likelihood function leads to

3‘—(1~F(—XL:)J

f{-x E»x£

" 1

L=1 F(—XLE) [1—F€—xL§l]
T A
v, =(1-F(-x_§))
vk — L f-x Bix; = 0, (7)
L:Tl+1 P(—xtf) [1—F(~xtﬁ]]
where E is the ML estimator for the augmented samples; f(.)

[resp. F(.)] is the probability [resp. cumulative] density
function of « . It is readily seend that 2 = g if and only if
Ni B I=Flex. 8 1, ¥ L =T, # 1yi6+5sT: The prediction rule,

however, ignores the dichotonomous property of the dependent



variable. Similarly, in Tobit models with i.i.d. disturbance

terms, y = y if and only if y L ¥ t = T1+1,...,T.

Since xtT may be negative, the prediction rule deems

unreasonable. At Lhis point, we may conclude thai Kmenta-

Balestra’s result does not apply to Limited dependent modeis when

the missing observations pertain to the dependent variable,

~1



As noted in Salkever (1976) for linear models, the problem
considered in Lhis paper when XZ is unobservable is actuully
equivalent Lo the problem studied in the Hterature oi unique
evenl dummy variable models. Thus, Kmenta-Baleslra's resulits
correspond Lo Salkever's while our resulis COrrespond o
anderson (1987) 7 5. Nonetheless, both Salkever and Anderson
only discuss i.i.d. cases.

~ ~

in faet, L = l—F(—xrs) is the mean of y? upon replacing

unhnown & by g . The prediction rule is hence the same as
that applied in linear models. For Tobit models, the rule

will set Yo T Xer # qdﬁ(—xtT )/(1-%(—xt7 bR
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